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иногда вещица
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Abstract

In this thesis, we provide an exposition of the invariant theory

of finite groups, with a focus on algorithms and the Hilbert

series. We apply the built-up theory to the algebra of invari-

ants of multigraphs, as well as s-graphs, which are graphs

weighted in {0, 1, ..., s}. Utilizing computer exploration on

the invariant algebra of s-graphs, we derive a formula for the

Hilbert series of any permutation group acting on a special

discrete variety, V |s. We conjecture that this formula can be

generalized to any finite group. Furthermore, we present a

version of King’s algorithm for computing a (minimal) gener-

ating set for the algebra of invariants on simple graphs. We

conjecture the correctness of this algorithm and its poten-

tial generalization to any finite group acting on V |s. Finally,
we recreate Thiery’s disproof of Pouzet’s conjecture, from

[Thi00].
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0 Introduction

Invariant theory is the study of group actions on algebraic varieties, by considering

their effect on functions. In the classic sense, this means looking at group actions

on the algebra, C[V ], where usually V = Cn. In particular, we want to describe the

set of elements (i.e. polynomials) in C[V ], which stay invariant under the action,

g · f(x) = f(g · x). Within the past 50 years, this subject has enjoyed a resurgence

of interest, with applications in fields spanning as far as the cohomology of finite

groups, coding theory, material science, and even computer vision. One particular

application of invariant theory is that of graph theory, which will be the focus of

this thesis.

Outline. The thesis is split into four main sections.

1. Preliminaries: This section is mainly a collection of combinatorial results and

procedures, used throughout section 3 and 4. The most important result being

Pòlya’s enumeration theorem.

2. Invariant Theory of Finite Group: A concise exposition of the theory of invari-

ants of finite groups. This includes old, as well as new, results, with a focus on

computability, bounds and the Hilbert series. The main results of this section

is Hilbert’s finiteness theorem, Molien’s formula, and King’s algorithm.

3. Invariant Theory on Graphs: We apply the results and algorithm of Section 2

to the example of the invariant algebra of graphs. We primarily follow [Thi00],

however, we expand upon his work. In particular, we look at the algebras,

In|s, of invariants of graphs weighted in {0, 1, ..., s}. This led us to a new

formula for the Hilbert series of C[V |s]G, where G is a permutation group,

and V |s is a special finite variety. Furthermore, we conjecture to have found a

variation of King’s algorithm, which explicitly computes a (perhaps minimal)

generating set of In|s.

4. Reconstructability: We investigate an algebraic generalization of Ulam’s con-

jecture for multigraphs, known as Pouzet’s conjecture. The main goal of this

section is to recreate Thiery’s ([Thi00]) disprove Pouzet’s conjecture.

The focus throughout the thesis is computability, and the interplay between

invariant theory and its algorithms, along with combinatorics and computer ex-

ploration. We have implemented most of the algorithms we come across in the

computer algebra system, SAGEMATH, and make heavy use of these implementations

to aid us in our investigations of graphs, through the lens of invariant theory. For

instance, the disproof of Pouzet’s conjecture relies heavily on computations from

these implementations, and is a great example of how these tools can be utilized.

New improvements and conjectures. Throughout the thesis we give a few

new improvements to known results, as well as a few conjectures, most of which is
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contained in Section 3. Generally, in the Section 3, we expanded the theory from

that of simple- and multigraphs, to that of graphs weighted in {0, 1, ..., s}.
We will now briefly expand on the results mentioned in item 3, of the outline

above. Firstly, we define the discrete finite variety,

V |s = {
∑(n2)

i=0 giei | gi ∈ {0, 1, 2, ..., s}},

of s-graph (graphs with weights in {0, 1, ..., s}), and we denote by S
(2)
n the represen-

tation of the symmetric group Sn acting on two-sets, σ{i, j} = {σi, σj}. Then the

algebra, In|s := C[V |s]S
(2)
n , is the algebra of invariants on s-graphs. In particular,

the polynomials in In|s separate s-graph isomorphism classes. We find that the

Hilbert series, H(In|s, z), enumerates the number of s-graphs, and from this, we

find the formulas,

i) H(In|s, z) =
1

n!

∑
λ

|Cλ|
∏
i

(
s∑

k=0

zk·i

)λi

ii) H(In|s, z) =
1

n!

∑
M∈S(2)

n

det(idn − zs+1M)

det(idn − zM)

which led us to the following generalization: For any permutation group G we have

H(C[V |s], z) =
1

|G|
∑
M∈G

det(id− zs+1M)

det(id− zM)
.

Perhaps this formula is true for any finite group G; however, due to time constraints,

we could not test this proposal. (See Remark 3.5, Question 3.1 for these results).

We also wish to compute a (minimal) generating set for In|1, but since the

author know of no algorithm which finds invariants over C[V |s], the only way to

compute these invariants was to compute a minimal generating set of In, and take

the quotient map of these. However, we found that the set attained by this process

was not, in general, minimal. Miraculously, however, through trial and error, we

came up with a variation of King’s algorithm, Algorithm 4, which seems to produce

a (perhaps minimal) generating sets for In|1. This was tested on n = 4 and n = 5.

Both of which yielded the same sets, found by hand. We conjecture the algorithm

is correct and that it can be altered to work for In|s. Moreover, we conjecture (if

the correctness conjecture is true) that it will work for any finite group.

Prerequisites. It is assumed that the reader is familiar with commutative algebra,

basic algebraic geometry, along with Gröbner bases and basic representation theory.

Any standard textbook on these subjects should suffice. Furthermore, some homo-

logical algebra is used when we discuss the Gorenstein property. However, this is a

small part of the thesis, and is in not needed for the understanding of the rest.

Acknowledgements. I would like to extend my deep gratitude to my supervisors,

Henrik Holm and Søren Eilers. Through means of great supervision and tasty

breakfasts, have they made the writing process of this thesis thoroughly enjoyable

and thereby effectively painless!
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1 Preliminaries

This section serves to provide the necessary background theory, to be used through-

out this thesis, and also serves to introduce the notation and definitions used.

1.1 Graded algebras and Hilbert series

Graded algebras and their Hilbert series play a fundamental role in this thesis. We

will now briefly walk through the basic definitions, and a condition which plays a

vital role later on. Many more properties of these structures will be shown in later

sections.

Definition 1.1. An algebra, A, over a field, K, is said to be N-graded if we can

decompose A as A =
⊕∞

d=0Ad, into a direct sum of vector spaces, Ad, such that

AdAr ⊆ Ad+r.

We call the summand, Ad, the homogeneous component of degree d, the elements

of which are said to be homogeneous of degree d.

We say that the graded algebra, A, is connected if A0 = K.

Unless stated otherwise, we will simply refer to connected N-graded algebras as

graded algebras.

Definition 1.2. The Hilbert series, H(A, z), of a graded algebra, A, is the power

series given by

H(A, z) :=
∞∑
d=0

dim(Ad)z
d.

Of course, one can extend this definition to any algebra, with some given de-

composition into direct sums of finite-dimensional vector spaces. Later on, we will

be considering the Hilbert series of a so-called semi-graded algebra.

The following allows us to give a bound on the dimensions of the homogeneous

components. The condition may seem weak, but it turns out to be rather powerful,

and is crucial in disproving Pouzet’s conjecture.

Condition 1.1. Let H = {h1, ..., hk} be a finite homogeneous generating set for

the connected N-graded algebra, A, with respective degrees D = {d1, ..., dk}. Then

H(A, z) is dominated by (i.e. term-wise bounded by) the power series,

F (D, z) :=
∏
d∈D

1

1− zd
=

∞∑
i=0

fiz
i.

I.e. we have dim(Ai) ≤ fi for all i.

Proof sketch due to [Thi00]. As vector spaces, the homogeneous component, Ad, is

generated by all products hl1
1 · · ·h

lk
k with l1d1 + · · ·+ lkdk = d. One sees that these

products are counted by the power series of F (D, z).
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1.2 Pólya’s Enumeration Theorem

Later in this thesis, we will want to count the number of unlabelled graphs under

some set of restrictions. This may seem like a daunting task, but thanks to the

remarkable enumeration theorem of Pólya, doing so becomes quite doable!

In this section, we present the necessary background to state, but not prove, the

theorem. The exposition closely follows that of Harary and Palmer in [HP73].

Let A be a finite group acting by permutation on a finite set, X = {1, 2, ..., n}.
With this action, each permutation α ∈ A can be written uniquely as a product of

disjoint cycles. Denote by λi(α) the number of cycles in α of length i.

Definition 1.3. With the setup above, the cycle index, Z(A), of A is defined as

the polynomial, in the variables s1, s2, ..., sn, given by

Z(A) =
1

|A|
∑
α∈A

n∏
i=1

s
λi(α)
i .

In case we want to explicitly display the variables sk, we write Z(A; s1, s2, ..., sn),

and we may exchange the sk’s with an expression if we wish.

Example 1.1 ([HP73]). Using Notation 3.1 and denoting by Cλ the conjugacy class

tied to the partition, λ, the cycle index of the symmetric group, Sn, is given by

Z(Sn) =
1

n!

∑
λ

|Cλ|
n∏

i=1

sλi
i ,

where we sum over all partitions, λ, of n.

Let A be as before, and let B be a finite group acting by permutation on some

countable set, Y , of at least two elements. We define the power group, denoted by

BA, to be the group consisting of all ordered pairs, denoted (α; β), with α ∈ A,

β ∈ B. Its defining action is on the collection, Y X , of functions from X to Y , by

((α; β)f)(x) := βf(αx),

for all x ∈ X, and (α; β) ∈ BA.

We now take B = E, with E being the identity group on Y , and consider the

power group EA acting on Y X . We call a function w : Y → N with finite fibers

(i.e., |w−1(k)| <∞, for all k) a weight function, and we say that a y ∈ Y for which

w(y) = k, has weight k. We then define the number of figures by

ck = |w−1(k)|

for all k ∈ N. Furthermore, we define the figure counting series as the power series,

c(z) =
∞∑
k=0

ckz
k,
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which enumerates the elements of Y , by weight.

We define the weight of a function, f ∈ Y X by

w(f) =
∑
x∈X

w(f(x)),

and find that it is constant over any orbit in EA. Hence, it is well-defined to define

the weight, w(F ), of an orbit, F , of EA to be the weight of an arbitrary f ∈ F .

Since we demanded that |w−1(k)| <∞, there are only a finite number of orbits for

any given weight, k, so we define Ck < ∞ to be the number of orbits of weight k.

We define the function counting series to be given by

C(z) =
∞∑
k=0

Ckz
k.

Finally, we write Z(A, c(z)) := Z(A; c(z), c(z2), c(z3), ...) and may state Pólya’s

Enumeration Theorem.

Theorem 1.1 (Pólya’s Enumeration Theorem). The function counting series, C(z),

is determined by substituting for each variable, sk in Z(A), the figure counting se-

ries, c(zk). That is, we have

C(z) = Z(A, c(z)).

Proof. Omitted. For a proof see [HP73, p.43].

This theorem can be generalized to n variables. For this, we again consider the

power group EA acting on Y X , but now consider the n-variable weight function,

w : Y → Nn, with finite fibers. Using component-wise addition, everything is

defined as before, and now the figure counting series and function counting series

are power series over all monomials, zk11 · · · zknn . Denote by Z(A, c(z1, ..., zn)) the

polynomial obtained by replacing sk in Z(A) by c(zk1 , ..., z
k
n). Then the multivariable

Pólya’s Enumeration Theorem is stated as follows.

Theorem 1.2 (Multivariable Pólya’s Enumeration Theorem). The function count-

ing series, C(z1, ..., zn), is obtained by substituting for each variable, sk, in Z(A),

the figure counting series. That is we have

C(z1, ..., zn) = Z(A, c(z1, ..., zn)).

The following identity if well-known.

Proposition 1.1. The following identity holds

∞∑
n=1

Z(Sn, c(z1, ..., zk)) = exp

(
∞∑
n=1

c(zn1 , ..., z
n
k )

n

)
.

Proof sketch. Expand the left side using the definition and Example 1.1, and expand

the right side using the Taylor series for the exponential. Compare the coefficients

to find that they are, in fact, the same.
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1.3 The Euler transformation of generating functions

In this thesis, we will come across many sequences, some of which we wish to

transform. One such transformation is the (inverse) Euler transformation. Here,

we give a basic rundown of its definition, interpretations, and computations. We

take inspiration from [HP73], [Sta78], and [Cam89].

Throughout this section, let an and bn be two infinite sequences with generating

functions A(x) and B(x).

Definition 1.4. We say that {bn} is the Euler transform of {an} if they are related

by the equality

1 +
∞∑
n=1

bnx
n =

∞∏
n=1

1

(1− xn)an
.

Conversely, we say {an} is the inverse Euler transform of {bn}.

An equivalent definition can be given in terms of their generating functions. Due

to the lack of proofs in the literature, we present our own proof.

Proposition 1.2. Let {bn} be the Euler transformation of {an} with generating

functions B(x), respectively A(x). Then the two generating functions are related by

1 +B(x) = exp

(
∞∑
k=1

A(xk)

k

)

Proof. Clearly we need only show
∏∞

n=1
1

(1−xn)an
= exp(

∑∞
k=1

A(xk)
k

). We see that

log

(
∞∏
n=1

1

(1− xn)an

)
=

∞∑
n=1

−an log(1− xn)

=
∞∑
n=1

an

∞∑
k=1

xnk

k

=
∞∑
k=1

∑∞
n=1 anx

nk

k

=
∞∑
k=1

A(xk)

k

where we used the Taylor expansion, − log(1 − x) =
∑∞

k=1
xk

k
, and allowed an

interchange of sums, since we don’t care about convergence. Taking the exponential

of both sides finishes the proof.

Sequences related as above have many interesting interpretations, one of which

comes from the following theorem.
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Theorem 1.3. Let A be a connected N-graded K-algebra, generated by the nonzero

homogeneous elements, y1, ..., yn, of positive degree, d1, ..., dn. Then the yi’s are

algebraically independent over k if and only if

H(A, z) = 1 +
∞∑
i=1

dim(Ai)z
i =

n∏
i=1

1

1− zdi
=

∞∏
i=1

1

(1− zi)ei

where ei counts the number of elements of {y1, ..., yn}, who is of degree i.

Proof. Omitted. See Theorem 3.5 of [Sta78] for a proof.

Thus, since A in the above is connected, we clearly see that the dimension of

the homogeneous components, dim(Ai), is the Euler transformation of the number

of algebraically independent homogeneous generators of degree d of A.

Computing the Euler transform of a sequence is just a trivial matter of eval-

uating the power series of the rational function, given on the right-hand side of

Definition 1.4.[1] However, we also wish to compute the inverse Euler transform of

a given sequence. To do this, we follow the recipe of [HP73]. Firstly, we need the

following result, which, again because of the lack of proofs in the literature, we give

our own proof.

Proposition 1.3. If
∑∞

n=0 bnx
n = exp(

∑∞
n=1 anx

n) then for n ≥ 1 we have

nan = nbn −
n−1∑
k=1

kakbn−k.

Proof. Take the derivative on both sides of
∑∞

n=0 bnx
n = exp(

∑∞
n=1 anx

n) to get,

by the chain rule, that

∞∑
n=1

nbnx
n−1 =

(
∞∑
n=1

nanx
n−1

)
exp

(
∞∑
n=1

anx
n

)

=

(
∞∑
n=1

nanx
n−1

)(
∞∑
n=0

bnx
n

)

=

(
∞∑
n=1

nanx
n−1

)(
1 +

∞∑
n=1

bnx
n

)

=
∞∑
n=1

nanx
n−1 +

(
∞∑
n=1

nanx
n−1

)(
∞∑
n=1

bnx
n

)
Multiplying through by x and using the Cauchy product formula, we get

∞∑
n=1

nbnx
n =

∞∑
n=1

nanx
n +

∞∑
n=1

(
n−1∑
k=1

kakbn−k

)
xn

and by comparing coefficients the desired formula is derived.

[1]There is a more sophisticated way, which speeds up the computation time. We implemented,

without proof, this faster way. (See Listing 1).
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Given two sequences, as in Definition 1.4, and using the form from Proposi-

tion 1.2, we may compute the inverse Euler transform of B(x) as follows:

First set
∞∑
n=1

cnx
n = log(1 +B(x)),

and take exp(−) on both sides. Using Proposition 1.3, we then get

ncn = nbn −
n−1∑
k=1

kckbn−k,

which allows us to compute cn from b1, ..., bn and c1, ..., cn−1. (Note c1 = b1).

Thus, we have that

∞∑
n=1

cnx
n = log(1 +B(x)) =

∞∑
n=1

A(xk)

k

and, by comparing the coefficients, we get

ncn =
∑
d|n

dad,

where ad is the coefficient of xd in A(x). Using the Möbius inversion formula on

this, we may express an as a sum of ci’s,

an =
∑
d|n

µ(d)

d
cn/d,

where µ is the Möbius function. We summarize this into the following procedure.

Procedure 1.1. Given a sequence, {bn}, we may compute its inverse Euler trans-

formation, {an}, using the intermediary sequence, {cn}, and the two equalities,

ncn = nbn −
n−1∑
k=1

kckbn−k,

an =
∑
d|n

µ(d)

d
cn/d,

where µ is the Möbius function.

We have implemented this procedure into SAGEMATH. See Listing 2.

The above procedure generalises to any number of variables, but we will only be

using the two variable version. This formulation of the procedure is due to [HP73].
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Procedure 1.2. If we have two generating functions, A(x, y) =
∑

an,mx
nym and

B(x, y) =
∑

bn,mx
nym, related by

1 +B(x, y) = exp

(
∞∑
k=1

A(xk, yk)

k

)
,

then we may computeA(x, y) fromB(x, y) by using the intermediary series, C(x, y) =∑
cn,mx

nym, and the two equalities,

ncn(y) = nbn(y)−
n−1∑
k=1

kck(y)bn−k(y),

an,m =
∑

d | gcd(n,m)

µ(d)

d
bn/d,m/d,

where sn(y) =
∑∞

m=1 sn,my
m, for s ∈ {a, b, c}.

While being a little more hairy to implement, it is very analogous to the one-

variable version. See Listing 3 for our implementation.

Remark 1.1. Working backwards in the proof of Proposition 1.2, but with two

variables, we see that the relation in Procedure 1.2 is the same as the relation,

1 +
∑
n,m

bn,mx
nym =

∏
n,m

1

(1− xnym)an,m
.

The interpretation of this is not entirely clear. Perhaps it to be related to the

multigradings of algebras, in much the same way as for one variable?
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2 Invariant Theory of Finite Groups

The theory of invariants is a very old field of mathematics, dating back to the 1840s

with the works of Cayley and Boole. Later on, Hilbert entered the scene and proved

many great results, with Hilbert’s finiteness theorem being the magnum opus, and

effectively putting a lid on invariant theory for a long time. However, within the

past 50 years, there has been a resurgence of the field from the perspective of

computation, as well as many new results in the so-called modular case.

In this section, we present some important results in invariant theory, both old

and new, which we will put into practice in Section 3. This exposition is based in

large parts on [DK15] and [PS08]. Most of the results we present are proved in full

generality in [DK15]; however, we simplify these proofs to the finite case.

Throughout this section, let V be an n-dimensional vector space over C with

a fixed basis e1, ..., en. Moreover, throughout this thesis, we let R = C[V ] =

C[x1, ..., xn] be the graded algebra of polynomials over C in n variables, and let

G ⊆ GL(V ) be some finite matrix group. We see that, G, acts naturally on R by

(Mf)(x) = f(Mx)

for all f ∈ R and M ∈ G.

We are interested in the polynomials, f , for which Mf = f for all M ∈ G. We

call such a polynomial a G-invariant, or simply an invariant, if there is no ambiguity

of the group, G. The collection of all such invariants,

RG := {f ∈ R | Mf = f for all M ∈ G},

is called the invariant algebra of G. It is clear that RG ⊆ R is a subalgebra.

The main goal of invariant theory is to describe RG. However, this turns out to

be a daunting task, and so one may start small and ask whether or not RG is finitely

generated: That is, does there exist f1, ..., fm ∈ RG such that RG = C[f1, ..., fm]?
This was positively answered by Hilbert in 1890 with Hilbert’s finiteness theorem.

We will see a proof of this fact in the subsequent subsection.

With Hilbert’s finiteness theorem in mind, we follow up with three questions

related to the generators, f1, ..., fm:

• How do we (efficiently) find the generators f1, ..., fm?

• What is the algebraic relation among the generators?

• Give an (efficient) algorithm to write any g ∈ RG in terms of f1, ..., fm. That

is, construct a polynomial, p, such that g = p(f1, ..., fm).

These three problems are often referred to as the fundamental problems of invariant

theory.
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Example 2.1 (Symmetric group). The most classical and fundamental example is

that of the invariant algebra of the symmetric group, Sn, acting by permutation of

the variables, xi. This algebra is quite well understood. Indeed, the generators of

RSn turn out to be exactly the elementary symmetric polynomials:

σk =
∑

1≤j1<···<jk≤n

xj1 · · ·xjk .

And there is no algebraic relation between them. That is, the polynomials are

algebraically independent.

This result is called the fundamental theorem of symmetric polynomials.

Remark 2.1. It is easily seen that RG consists of the polynomials that are constant

on all G-orbits in Cn. This suggests an interpretation of RG in terms of algebraic

geometry. Indeed, in the case of finite groups, all orbits of G acting on V = Cn are

certainly finite and are thus closed in Cn. Hence one has that Cn/G is an algebraic

variety, with coordinate ring C[V ]G. The problem of finding a set of generators,

f1, ..., fm, is then really a matter of finding an embedding Cn/G ↪→ Cm. See [PS08]

for a deeper discussion of this interpretation.

2.1 The Reynolds operator and Hilbert’s finiteness theorem

We’ll now move on to proving Hilbert’s finiteness theorem. To do this, we need an

operator called the Reynolds operator. It plays a fundamental role in the proof. In

fact, it is in general a very useful operator and will make appearances throughout

this thesis.

Definition 2.1. Let G ⊆ GL(Cn) be a finite group, acting on R = C[x1, ..., xn]. A

Reynolds operator is a G-invariant linear map R : R → RG such that if f ∈ RG

then R(f) = f .

In the case of finite groups, we can construct the Reynolds operator explicitly:

R(f) = 1

|G|
∑
M∈G

Mf.

Indeed, the three defining properties hold: R is clearly linear. It is G-invariant,

since right multiplication by N ∈ G, (i.e. M 7→ NM) is a permutation of G, so we

have that

R(N · f) = 1

|G|
∑
M∈G

MN · f =
1

|G|
∑
M ′∈G

M ′ · f = R(f).

Finally, if f ∈ RG then

R(f) = 1

|G|
∑
M∈G

M · f =
1

|G|
∑
M∈G

f =
1

|G|
|G|f = f.

We say that a subspace W ⊆ V is G-stable if Mw ∈ W for all M ∈ G and all

w ∈ W . Then, R has the following two properties:
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Proposition 2.1. It holds for the Reynolds operator R : R→ RG that

i) R is a RG-module homomorphism.

ii) If a subspace, W ⊆ R, is G-stable, then R(W ) = WG.

The first property means that R(fg) = fR(g) if f ∈ RG and g ∈ R. This is

called the Reynolds identity.

Proof. i) From the properties already shown, it suffice to prove thatR(fg) = fR(g)
for all f ∈ RG and g ∈ R. However, this is immediate from the simple computation:

R(fg) = 1

|G|
∑
M∈G

M · (fg) = 1

|G|
∑
M∈G

(M · f)(M · g) = 1

|G|
∑
M∈G

fM · g = fR(g)

ii) Take any f ∈ W . By assumption Mf ∈ W for all f , thus R(f) is a finite linear

combination of elements ofW . ButR(f) is also invariant soR(f) ∈ RG∩W = WG.

Example 2.2. Since M ∈ G is necessarily invertible (G is a group), we have

that every entry of Mx is a non-zero linear combination of the xi’s. Thus, if

f ∈ R is homogeneous of degree d, then clearly we have that f(Mx) will again be

homogeneous of degree d. So we see that Rd ⊆ R is a G-stable subspace, and we

have R(Rd) = RG
d .

A map, φ : X → Y , between two sets, which are both acted upon by G, is called

G-equivariant if φ(Mx) = Mφ(x) for all x ∈ X and M ∈ G.

Proposition 2.2. Let C[V1] and C[V2] be two coordinate rings. If φ : C[V1] ↠ C[V2]

is a surjective G-equivariant linear map, then φ(C[V1]
G) = C[V2]

G.

Proof. Since φ is G-equivariant, we have that ker(φ) is clearly G-stable, and so,

by Maschke’s theorem, there exist a G-stable complement, W , to ker(φ) so that

C[V1] ∼= ker(φ)⊕W . Thus φ|W : W → C[V2] is an isomorphism of representations

of G, and it follows that φ(C[V1]) = φ|W (WG) = C[V2]
G.

We now prove the most important result of invariant theory.

Theorem 2.1 (Hilbert’s finiteness theorem). The subalgebra RG is finitely gener-

ated as an algebra over C.

Proof. Let I ⊆ R be the ideal generated by all homogeneous invariant polynomials

of positive degree. Since R is Noetherian (Hilbert’s basis theorem), we have that I =

⟨f1, ..., fn⟩ is finitely generated with fi ∈ RG. We will show that RG = C[f1, ..., fn].
Clearly, C[f1, ..., fn] ⊆ RG, so it suffices to take h ∈ RG, homogeneous of degree

d, and show h ∈ C[f1, ..., fn]. We show this by induction on d:

For d = 0 we have h ∈ C ⊆ C[f1, ..., fn].
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For d > 0, we may decompose h as

h =
n∑

i=1

gifi,

with gi ∈ R being homogeneous of degree d− deg(fi) < d, since h itself is homoge-

neous and fi is of positive degree. Applying the Reynolds operator to both sides of

this decomposition, and applying the Reynolds identity we get that

h = R(h) = R

(
n∑

i=1

gifi

)
=

n∑
i=1

R(gi)fi.

By Example 2.2 we have that R(Rd) = RG
d . It follows that deg(R(gi)) =

deg(gi) = d− deg(fi) < d, and so by the induction hypothesis R(gi) ∈ C[f1, ..., fn],
for all i. Thus we have h ∈ C[f1, ..., fn], as desired.

Remark 2.2. In the proof above, we only use the finiteness assumption when we

use the Reynolds operator. In fact, the proof above works for any group, which

admits a Reynolds operator. These groups are called reductive. For a version of

the above statements in full generality, see [DK15, Chapter 2].

Noether refined Hilbert’s theorem for finite groups in 1916 with the following

theorem. We define the degree of a group G ⊆ GL(V ) to be m = dim(V ).

Theorem 2.2 (Nother’s degree bound). The invariant ring, RG, of a finite group,

G, has an algebra basis consisting of at most
(
m+|G|

m

)
invariants of degree at most

|G|.

This bound is optimal in the sense that there exists groups G ⊆ GL(Cm) such

that all algebra bases for RG contain at least
(
m+|G|−1

m−1

)
invariants of degree |G|. (See

[PS08, Proposition 2.1.5]). However, in almost all cases of interest, these bounds

horribly loose.

The optimal bound on the degree of a generating set of invariants plays a larger

role, and so we will denote it by β(RG). That is,

β(RG) := inf{ n | RG is generated by
n⊕

d=0

RG
d } ∈ N ∪∞.

It’s an interesting and important problem to find a good bound, D, on β(RG) ≤ D.

In fact, good bounds have great algorithmic implications on the construction of the

invariants. Indeed, the bound often plays the role of a stopping condition for many

algorithms in invariant theory. For example, Algorithm 1 uses it as a stopping

condition. See [DK15] for more such algorithms.

Finally, we conclude this section with a small proposition regarding the algebraic

relations of invariants.
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Proposition 2.3. Let m be the degree of a finite matrix group G. Then the invari-

ant algebra RG has Krull dimension m. This is equivalent to the existence of a set

of m algebraically independent invariants. This set will be maximal with respect to

cardinality.

Proof. Let t be an indeterminate. Define a family of polynomials in R[t] by Fi :=∏
M∈G(Mxi − t) for each i ∈ {1, 2, ...,m}. We have that Fi ∈ RG[t] since it is

invariant under the action of G on the xi’s and thus its coefficients are also invariant.

By construction t = xi is a root of Fi, since id ∈ G. Hence per definition every

xi is algebraically dependent on a certain invariants. It follows that RG and R have

the same Krull dimension. Since R is a polynomial ring, the Krull dimension of

R = C[V ] equals the number of indeterminates, which equals the dimension of V ,

which by definition is the degree of G ⊆ GL(V ).

2.2 Molien’s formula

Since R = ⊕∞
d=0Rd is a connected graded algebra by degree, it is clear that RG =

⊕∞
d=0R

G
d inherits this grading by degree.

The Hilbert series contains a lot of important information about the invariant

ring; however, as it is defined, it is quite difficult to compute. Luckily, Molien’s

formula gives us a tangible way of computing Hilbert series for any finite group:

Theorem 2.3 (Molien’s Formula). Let V be a C-vector space and let G be a finite

group realised as its matrix group in GL(n). Then

H(C[V ]G, z) =
1

|G|
∑
M∈G

1

detV (idn − zM)
,

where idn is the n× n identity matrix.

Before we prove this, we need a small representation theoretic lemma.

Lemma 2.1. Let G be finite matrix group and let

V G := {v ∈ Cn | Mv = v for all M ∈ G}

denote the invariant subspace. Then dim(V G) = 1
|G|
∑

M∈G tr(M).

Proof. Consider the average, A = 1
|G|
∑

M∈GM .[2] Since clearly Av = v for v ∈ V G

and since A2v = Av (since M acts by permutation on G), we have that A is a

projection onto V G. This implies that A has only 1 and 0 as possible eigenvalues,

and it follows that A must have rank equal to the multiplicity of it’s 1-eigenvalue.

Hence, dim(V G) = rank(A) = tr(A) = 1
|G|
∑

M∈G tr(M).

[2]In the case of Theorem 2.3, this A turns out to just be the Reynolds operator.
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Proof of Theorem 2.3. Recall that the graded part, C[V ]d, is an
(
n+d−1

d

)
-dimensional

vector space, with monomials of degree d as a basis. Let Md denote the correspond-

ing matrix of the induced action of M on C[V ]d. The invariant subspace of C[V ]d
with respect to the induced group, Gd = {Md | M ∈ G}, will clearly coincide with

C[V ]Gd . So we want to find trace of Md, since then we can use Lemma 2.1.

Identify Cn with C[V ]1, within which we denote by vM,1, ..., vM,n ∈ C[V ]1 the

eigenvectors of M = M1. Let λM,1, ..., λM,n denote the corresponding eigenvalues.

By construction, the eigenvectors of Md will then be all combinations, vd1M,1 · · · v
d2
M,2,

such that d1 + · · · + dn = d. The corresponding eigenvalues will be λd1
M,1 · · ·λ

dn
M,n.

Thus we find that

tr(Md) =
∑

d1+···+dn=d

λd1
M,1 · · ·λ

dn
M,n,

and by Lemma 2.1 we get

dim(C[V ]Gd ) =
1

|G|
∑
M∈G

∑
d1+···+dn=d

λd1
M,1 · · ·λ

dn
M,n.

Using the closed form of the geometric series, we obtain our result:

H(C[V ]G, z) =
∞∑
d=0

dim(C[V ]Gd )z
d

=
∞∑
d=0

(
1

|G|
∑
M∈G

∑
d1+···+dn=d

λd1
M,1 · · ·λ

dn
M,n

)
zd

=
1

|G|
∑
M∈G

∑
(d1,...,dn)∈Nn

λd1
M,1 · · ·λ

dn
M,nz

d1+···+dn

=
1

|G|
∑
M∈G

1

(1− λM,1z) · · · (1− λM,nz)

=
1

|G|
∑
M∈G

1

det(idn − zM)

Recall from character theory that two members of the same conjugacy class will

yield the same character, and thus have the same trace. We therefore see, from the

last list of equalities in the proof of Theorem 2.3, that the summands depend only

on the conjugacy class. The following corollary follows.

Corollary 2.1. Let C(G) denote the set of conjugacy classes of G and MC denote

an arbitrary element of C ∈ C(G). Then

H(C[V ]G, z) =
1

|G|
∑

C∈C(G)

|C| 1

det(idn − zMC)
.
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Remark 2.3. Molien’s formula can be generalized to work with any vector space,

over any field, K, whose characteristic doesn’t divide |G|.
Furthermore there exist a way to extend Molien’s formula to the case where

char(K) = p divides |G|, but p2 does not divide |G|. In general, however, there

exists no version of Molien’s formula for the modular case. ([DK15, Chapter 2.7]).

2.3 Homogeneous systems of parameters

It turns out that the invariant algebra, RG, can be decomposed in a special manner,

called the Hironaka decomposition. This decomposition is very useful and can aid

us in many tasks. For example, it may help us determine better bounds, and many

algorithms for constructing a generating set for RG are based on it.

Let A be a connected graded C-algebra with Krull dimension m. A subset,

{θ1, ..., θm}, of homogeneous elements of A of positive degree is called a homoge-

neous system of parameters (h.s.o.p.) if A is finitely generated, as a module over

C[θ1, ..., θm] ⊆ A. Note that θ1, ..., θm can always be chosen to be algebraically

independent.

Noether’s normalization lemma implies that an h.s.o.p. for A always exists.

The following theorem is purely commutative algebra, and so we will not prove

it here, but a proof can be found in [PS08].

Theorem 2.4. Let A be a connected graded C-algebra with an h.s.o.p, θ1, ..., θn.

Then the following two are equivalent:

i) There exists a finite set of homogeneous elements η1, ..., ηt ∈ A such that

A =
t⊕

i=1

ηiC[θ1, ..., θm]. (2.1)

I.e. A is a finitely generated free module over C[θ1, ..., θm].

ii) A is a finitely generated free module over C[ϕ1, ..., ϕm] for every h.s.o.p.,

ϕ1, ..., ϕm.

Definition 2.2. A connected graded algebra which satisfies (i), and thus also (ii),

of Theorem 2.4 is said to be a Cohen-Macaulay algebra. We call the decomposition,

in Eq. (2.1), the Hironaka decomposition of A.

Furthermore, if A = RG is an invariant algebra, then we call θ1, ..., θm the

primary invariants, and η1, ..., ηt the secondary invariants. Together they clearly

form a generating set for RG.

A lot of algorithms for computing invariants depend on the Hironaka decom-

position: They often first compute the primary invariants, and thereafter compute

the secondary invariants. (See [DK15] for examples).
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Furthermore, the Hilbert series of a Cohen-Macaulay algebra and the Hironaka

decomposition are closely intertwined, as seen in the following corollary shows. A

proof of the fact can be found in [Sta78].

Corollary 2.2. Let A be a Cohen-Macaulay algebra with Krull dimension m. Set

d1 = deg(θi) and ei = deg(ηi), then

H(A, z) =

∑t
i=1 z

ei∏m
i=1(1− zdi)

.

Remark 2.4. From this corollary, one can estimate a degree bounds. For instance,

if one already knows a good set of primary invariants, then one can multiply through

by the denominator to get that

m∏
i=1

(1− zdi)H(A, z) =
t∑

i=1

zei .

From this one can read off the highest degree, et, meaning β(A) ≤ max(et, dm).

Furthermore, the number of secondary invariants of degree i is the the coefficient

of zei in the polynomial above.

Finally, for invariant algebras, RG, of Krull dimensionm, one can see by Laurent

expanding H(RG, z) that we have

t =
d1...dm
|G|

and rt+ 2(e1 + · · ·+ et) = t(d1 + · · ·+ dm −m),

where r is the number of pseudo-reflections. (An element M ∈ In is called a

pseudo-reflection if it has precisely one eigenvalue not equal to 1). From this, one

can determine t, the number of secondary invariants. (See [Sta79] for a proof).

We now find ourselves at another critical theorem of modern invariant theory.

The theorem says that any invariant algebra of a finite group is Cohen-Macaulay![3]

Although being so critical, it was allegedly folk lore for a long time, until properly

proven in a 1971 paper by Hochster and Eagon.

Theorem 2.5. Let R = C[x1, ..., xm] and G ⊆ GL(Cn) be a finite matrix group.

Then RG is Cohen–Macaulay.

Proof. Recall the polynomials Fi from the proof of Proposition 2.3. They are monic

polynomials with coefficients inRG and with xi a root. Hence, R is finitely generated

as an RG-module. Furthermore, we may decompose R = RG ⊕ U as RG-modules,

with U = { f ∈ R | R(f) = 0 }.
Noether’s normalization lemma implies that RG has an h.s.o.p., say θ1, ..., θm.

So we have that R is finite over RG, which is finite over C[θ1, ..., θm], which means

[3]In fact, the result works in a more general setting: If G is a linearly reductive group, then

K[V ]G is Cohen-Macaulay. This is called the Hochster-Roberts Theorem. (See. [DK15])
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that R is also finite over C[θ1, ..., θm]. Since R is clearly Cohen-Macaulay (e.g. take

the h.s.o.p. {x1, ..., xm}) it follows from Theorem 2.4, that R is a finitely generated

free C[θ1, ..., θm]-module.

Hence, by modding out by ⟨θ1, ..., θm⟩ of R = RG ⊕ U , we get that

R/⟨θ1, .., θm⟩ = RG/⟨θ1, ..., θm⟩ ⊕ U/(θ1U, ..., θmU)

is a finite dimensional vector space. We can thus choose a C-basis of homogeneous

polynomials, η1, ..., ηt, ηt+1, ..., ηs for R/⟨θ1, .., θm⟩, such that η1, ..., ηt is a basis for

RG/⟨θ1, .., θm⟩ and ηt+1, ..., ηs is a basis for U/(θ1U, .., θmU).

We may now lift η1, ..., ηt resp. ηt+1, ..., ηs to elements η1, ..., ηt ∈ RG resp.

ηt+1, ..., ηs ∈ U . By Theorem 2.4, we have that R =
⊕s

i=1 ηiC[θ1, ..., θm], which by

our decomposition, R = RG ⊕ U , gives the desired Hironaka decomposition of RG,

RG =
t⊕

i=1

ηiC[θ1, ..., θm],

which, by definition, shows that RG is Cohen-Macaulay.

2.3.1 The Gorenstein property

An even stronger property, than the Cohen-Macaulay property, that some invariant

rings admit is the Gorenstein property. The following are one of the many equivalent

definitions of the Gorenstein property.

Definition 2.3. A commutative local Noetherian ring, R, is said to be a Gorenstein

local ring if it has finite injective dimension as an R-module. A general commutative

Noetherian ring is said to be Gorenstein if it is a Gorenstein local ring for every

localization at a prime ideal.

Remark 2.5 ([DK15]). Let R = C[V ], G finite and let A ⊆ RG be a subalgebra

generated by a set of primary invariants. We have that Hom(RG, A) is a RG-module

with (f ·φ)(g) := φ(f ·g) for f, g ∈ RG and φ ∈ Hom(RG, A). Then RG is Gorenstein

if Hom(RG, A) is free of rank one, as an RG-module. This is independent of the

choice of A.

In particular, Gorenstein implies Cohen-Macaulay, meaning it’s a strictly stronger

property.

This next remarkable theorem, due to [Sta78], is not strictly within the field

of invariant theory, but since it assumes Cohen-Macaulay, it is very well suited for

invariant theory. The complete proof is rather very long, so we’ll only be given a

sketch of the ”only if” part, which is arguably the most interesting part.

Theorem 2.6. Let A be connected graded Cohen-Macaulay algebra. Assume further

that A is an integral domain with Krull dimension m. Then A is a Gorenstein alge-

bra if and only if there exists some r ∈ Z such that H(A, 1
z
) = (−1)mzm+rH(A, z).
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Proof sketch of the ”only if” part of theorem 4.4 in [Sta78]. Since A is finitely gen-

erated it has, say, s generators. Let then P = C[y1, ..., ys] be a polynomial ring over

C in s independent variables.

Because A is Cohen-Macaulay we may consider the canonical module, KA, of A

(i.e. KA = Exts−m
P (A,P )). The proof is then based on the fact that A is Gorenstein

if and only if KA
∼= A.

To show this isomorphism one first shows that KA can be graded, as an A-

module, in such a way that H(KA, z) = (−1)mzqH(KA,
1
z
), for some q ∈ Z. (This

is the hard part).

Because the above, along with the assumptions of the theorem, we may ’shift’

the grading of KA in such a way that the 0-degree elements form a vector space

over K of dimension one. Furthermore, since A is an integral domain, we have

that KA is isomorphic to an ideal of A. Identifying KA with this ideal, we see

from the above that H(KA, z) = H(A, z), and since A is an integral domain, we

have that dim(xAd) = dim(Ad) = H(A, z)d = H(KA, z)d, for any 0 ̸= x ∈ KA

of degree 0. But KA ⊆ A is an ideal and x ∈ KA so xAd ⊆ KA,d, and since

dim(xAd) = H(KA, z)d = dim(KA,d), we have xAd
∼= KA,d. It then follows that

A ∼= xA ∼= KA.

Being Gorenstein comes with a lot of homological properties (see [Hap91]), which

we didn’t have time to explore with our example of graphs in Section 3. However,

we do think it would be fruitful to explore what can be inferred about graphs, by

applying the above theorem and focusing on the homological properties, which arise

from its Gorenstein property.

2.4 Minimal generating sets and King’s algorithm

Given some set of primary invariants, the set of secondary invariants are minimal

module-generators. However, the union of the two need not be minimal algebra

generators, as defined below.

Definition 2.4. Let B be a set of elements of a connected graded algebra, A. We

call B a minimal system of generators if A is generated by B, but no strict subset

of B generates A, as an algebra.

Similarly to vector spaces, where bases are not unique but the number of basis

elements is, we see that minimal generating sets for graded algebras are not unique,

but the number of elements as well as the degrees are unique. In fact, the two

notions are closely related as the proof of the following shows.

Proposition 2.4. Let {a1, ..., ak} and {b1, ..., bl} be two homogeneous minimal gen-

erating sets for a connected graded algebra, A over C, sorted in increasing order by

degree. Then k = l and deg(ai) = deg(bi) for all i. Hence β(A) = deg(ak).
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Proof sketch. Let A+ ⊆ A denote the ideal in A of consisting of elements of positive

degree. A homogeneous set B generates A as an algebra if and only if the same set

generates A+ ⊆ A as an ideal. Furthermore, by Nakayama’s lemma (the graded

version) we have that B generates A+ as an ideal if and only if they generate A+/A
2
+

as a vector space over C. Thus {a1, ..., ak} ⊆ B can be chosen to be a basis of the

vector space A+/A
2
+, and their lift to A will then be a minimal generating set.

There is no known general shortcut for knowing the size of the minimal gener-

ating set, nor how many of each degree there are. Thus, the only real way to know

these numbers is to compute a minimal generating set.

2.4.1 King’s algorithm

A relatively new way of computing a minimal generating set for a finite group was

introduced by King in 2007 ([Kin13]) with what is now called King’s algorithm. It

is a remarkably simple algorithm that directly computes the minimal generating

set, avoiding primary and secondary invariants. Here we give the slightly altered

version and proof, both due to [DK15]. King’s algorithm is also noteworthy in that

it essentially avoids the use of Gröbner bases; however, in our experience with the

examples from Section 3, we found that using d-truncated Gröbner bases is faster.

Let Md denote the set of monomials of degree d, let LM(f) denote the leading

monomial of f , and let NFG(f) denote the normal form of f , with respect to the

set of polynomials, G. (See [DK15, Algorithm 1.1.6] for an algorithm). We also

denote by spol(f, g) the s-polynomial of f, g. (See [DK15, Section 1.1.4]). Finally,

a subset, G ⊆ I, of an ideal is called a d-truncated Gröbner basis if every monomial

of L(I) := {LM(f) | f ∈ I} of degree ≤ d is contained in L(G).

Algorithm 1: King’s algorithm

input : Finite group, G, and an upper bound, D, on β(C[V ]G)

output: Minimal generating set, S, of C[V ]G, where V = Cm

1 S ← ∅
2 G ← ∅
3 for d from 1 to D do

4 G ← d-truncated Gröbner basis of ⟨S⟩
5 M ← {m ∈Md | ∄g ∈ G such that LM(g) divides m}
6 if M = ∅ then break;

7 for t ∈M do

8 f ← R(t)
9 if g ← NFG(f) ̸= 0 then

10 Add f to S

11 Add g to G

12 return S
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Proof of correctness. Denote by C[V ]G<d the subalgebra generated by all invariants

of degree < d. The proof is by induction on d, and since the base case is clear, we

need only show that after the d’th iteration, we have that C[V ]G<d ⊆ C[S]. So let S

be the set we get at the end of the (d−1)’th iteration, and assume C[V ]G<d−1 ⊆ C[S].
Let f ∈ C[V ]Gd . By definition of the normal form, we have f − NFG(f) ∈

⟨G⟩ ⊆ ⟨S⟩, so we may write f − NFG(f) =
∑r

i=1 gifi, with homogeneous fi ∈ S

and homogeneous gi ∈ C[V ] of degree d − deg(fi) < d. By applying the Reynolds

operator, R, on equality, we get that

f −R(NFG(f)) =
r∑

i=1

R(gi)fi ∈ C[S]. (2.2)

Notice that by construction NFG(f) lies in the K-span of ⟨M⟩. Thus, R(NFG(f))

lies in the K-span of ⟨R(M)⟩, and so we can conclude that

C[V ]Gd ⊆ C[S] + span(⟨R(M)⟩). (2.3)

It remains to prove that the algebra generated by S, after the for-loop of line 7,

contains R(M). Assume some number of iterations have passed and let f1, ..., fm,

respectively g1, ..., gm, be the invariants which have been added to S, respectively

be the normal forms of the fi’s added to G. Denote S ′ = S ∪ {f1, ..., fm} and

G ′ = G ∪ {g1, ..., gm} these new sets. We notice that G ′ remains a d-truncated

Gröbner basis since no s-polynomial of degree ≤ d can arise from g1, ..., gm and G.
Thus, the classic membership test will work with G ′, i.e. NFG′(R(t)) = 0 if and only

if R(t) ∈ ⟨S ′⟩, which, by Eq. (2.2) and the argument below Eq. (2.2), means that

R(t) ∈ C[S ′]. Therefore, by the end of the for-loop, we must have R(M) ⊆ C[S ′],

and, since we only added elements whenever it made the algebra larger, the set S ′

must be minimal. Finally, since G remained a d-truncated Gröbner basis, when we

pass to iteration d+ 1, step 4 will yield the correct result.

In the case that M = ∅ we have from Eq. (2.3) that C[V ]G<d ⊆ C[S]. Further-

more, M = ∅ implies that every monomial of degree d is divisible by the leading

monomials of some g ∈ G. But this is clearly also true clearly for every monomial

of degree > d, and so M = ∅ for all subsequent iterations. Thus if M = ∅, we must

conclude that C[S] = C[V ]G, and we may terminate the process.

Because line 4 in the algorithm can be replaced with the line,

G ← G ∪ {NFG(h) | h = spol(f, g), ∀f, g ∈ G with deg(h) = d},

the algorithm is sometimes called ’essentially Gröbner free’. However we found the

algorithm, as presented above, to be much faster.

There are a few ways to further optimize King’s algorithm, however we will not

implement them here. See [DK15, Chapter 3.8].
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In most cases King’s algorithm outperforms all other algorithms for computing

algebra generators, for arbitrary finite invariant algebras. So not only is King’s

algorithm simple and gives a minimal set, it’s also generally the most effective

known method!

King’s algorithm has already been implemented many places, such as in SINGULAR

and MAGMA, however we still implement our own version in SAGEMATH. See Ap-

pendix A, Listing 5.

2.5 Permutation groups

Permutation groups are particularly well-behaved, as we will see in this section.

First and most importantly, we have a ’canonical’ choice for primary invariants,

when G is a permutation group. Indeed, the following shows that it is quite nat-

ural to study RG as an RSm-module. A proof of the fact can be found in [DK15,

Chapter 3.10].

Theorem 2.7. Let R = C[x1, ..., xm] and G ⊆ Sm be a permutation group. Then

the elementary symmetric polynomials, σ1, ..., σm, as defined in Example 2.1, is a

choice of primary invariants of RG.

We may combine this fact with Remark 2.4 to get the following bounds.

Corollary 2.3. Let R = C[x1, ..., xm] and G ⊆ Sm be a permutation group. Then

RG is a free module of rank t = m!
|G| over R

Sm. Furthermore, the number and degree

of the secondary invariants can be found by observing the polynomial,

t∑
i=1

zdeg(ηi) = H(RG, z)
n∏

i=1

(1− zi),

with ηi denoting the secondary polynomials.

Remark 2.6. In fact, in [Gö95], Göbel managed to show that when G is a permu-

tation group of degree m, we have that β(RG) ≤
(
m
2

)
.

All these results may seem very helpful, since there are clever algorithms that

compute the secondary invariants, when the primary invariants are given. However,

it is seldom the case that the choice of the elementary symmetric polynomials yield a

minimal generating set. In fact, for group of high degree, it will yield uncomputably

large sets. For example, the algebra, I5, from Section 3.1 has a minimal generating

set of size 56, i.e. 46 secondary invariants ([Thi00]). However, with the choice above

we would have a whopping
(102 )!
5!

= 30 240 secondary invariants! Even worse, I6 is

conjectured to have a minimal generating set consisting of 552 secondary invariants,

while the above would give us
(62)!
6!

= 1816 214 400 secondary invariants.
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Moreover, in his article, [Bor15], Borie used the elementary symmetric polyno-

mials as primary invariants to create an effective algorithm for computing these

secondary invariants. Incredibly, he managed to compute all 30 240 secondary in-

variants of I5[4] in a couple of minutes, whereas he claims it would take MAGMA and

SINGULAR over 24 hours to do the same. However, as stated above, because he uses

a ’bad’ set of primary invariants, the algorithm won’t scale well to I6 or higher

since we would either run out of memory or even storage.

But what is helpful is that the Hilbert series becomes very computable, in the

case of Permutation groups!

2.5.1 Hilbert Series of permutation groups

We will, in this subsection, give an easy to compute formula for the Hilbert series of

RG, when G is a permutation group. This formula plays a crucial role in Section 3.

We start with a helpful lemma.

Lemma 2.2. Let M be the permutation matrix corresponding to a permutation σ.

Then we have that

det(idn − zM) =
∏
k

(1− zk)lk ,

where lk denotes the number of k-cycles in the cycle decomposition of σ.

Proof. First note that we may rearrange and decompose M = ⊕iPki , where Pki

corresponds to a k-cycle, for some k. I.e. Pki is the k×k-matrix with 1 in the super

diagonal and in the bottom-left and 0 otherwise. Thus

idk − zPki =


1 −z

1 −z
. . .

−z 1

 ,

and one easily sees that det(Pki − zidk) = 1− zk, from which it follows that

det(idn − zM) = det(⊕i(idk − zPki)) =
∏
i

det(idk − zPki) =
∏
k

(1− zk)lk ,

where in the last equality we combined all cycles of equal length.

Since permutations of the same conjugacy class have the same cycle-type we

may combine the above lemma with Theorem 2.3 to get the following, quite explicit,

formula.

[4]Actually, in the paper, Borie claims he is computing invariants of I5. However, when we

computed the Hilbert series of the permutation group that he used, it did not match that of

I5, meaning he can’t have computed the invariants of I5. Nevertheless, the effectiveness of the

algorithm still stands.
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Corollary 2.4. Let G ⊂ Sn be a permutation group, let C(G) denote the set of

conjugacy classes of G, and let σC be an arbitrary element of C ∈ C(G). Then

H(RG, z) =
1

|G|
∑

C∈C(G)

|C| 1∏
i(1− zi)λi(σC)

where λi(σC) denotes the number of i-cycles of σC ∈ C.

Furthermore, we noticed the following connection to Section 1.2, which we

haven’t seen noted anywhere else, even though it’s quite a quirky connection.

Remark 2.7. For a permutation group, G, we have that

H(RG, z) = Z(G, 1
1−z

).

This follows from immediately from Corollary 2.4 and the definition of Z(G).
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3 Invariant Theory on Graphs

With all the relevant background theory built up, we now move to a peculiar ap-

plication of invariant theory, namely graphs. This section mainly follows Nicolas

Thiery’s exposition of the topic ([Thi00]), but we expand upon certain parts, using

inspiration from other sources, which will be mentioned along the way.

We consider an undirected finite graph, g = (V,E), with vertex set, V , and edge

set, E. We will label each vertex with a number, so that V = {1, 2, ..., n}, and the

edges by 2-sets, so that E = { {i, j} | i, j ∈ V }. We call such a graph a labelled

graph. If we assign to each edge, {i, j}, of a graph, g, a weight, wg({i, j}) ∈ K over

some field, K, then we call the graph a labelled K-weighted graph.

Given a vertex set, V , we may consider the K-vector space with basis vectors,

e{i,j}, indexed by the edges, {i, j} ⊆ V . We denote this vector space by Gn. It

is clear that Gn and the set of all labelled K-weighted graphs are in bijection.

Thus each point in Gn corresponds to a K-weighted graph. Furthermore Gn has

dimension m :=
(
n
2

)
, since there are m possible edges.

Recall the symmetric group, Sn, and let it act on our vertex set V = {1, 2, ..., n}.
This is the classical representation of Sn. However, Sn also acts on our edge set, E,

by σ · {i, j} = {σ · i, σ · j}, with σ ∈ Sn. This gives us a representation of Sn in S(n2)
,

and we denote this representation by S
(2)
n . Clearly, S

(2)
n is a permutation group of

degree
(
n
2

)
and size n!. S

(2)
n also acts naturally on Gn, by its induced action on the

basis vectors, σ · e{i,j} = e{σ·i,σ·j}.

Two K-weighted graphs, g = (V,E) and g′ = (V ′, E ′), are said to be isomorphic

if there exists some σ ∈ S
(2)
n such that σ·g = σ·

∑
E we{i,j} =

∑
E we{σ·i,σ·j} = g′, i.e.

if they are in the same S
(2)
n -orbit. If w ∈ {0, 1} then g and g′ are simple graphs and

the definition of graph isomorphism coincides with the usual definition. We call

an isomorphism class of a labelled K-weighted graph, an unlabelled K-weighted

graphs.

We now let K = C and consider the coordinate ring,

C[Gn] = C[ x{i,j} | {i, j} ∈ E ],

where evaluation f(g), of a polynomial f ∈ C[Gn] on a C-weighted graph g ∈ Gn,

is given by mapping x{i,j} to wg({i, j}). Naturally, S
(2)
n acts on C[Gn], defined by

σ · x{i,j} = x{σ·i,σ·j}, i.e. acts by permutation of the indeterminates.

We are, of course, now interested in the invariant ring, In := C[Gn]
S
(2)
n , since it

holds a lot of information about the orbits of S
(2)
n on Gn, and thus also about the

isomorphism classes of C-weighted graphs (i.e. unlabelled graphs). For example, if

the invariants f1, ..., fn ∈ In generate In, then they necessarily separate the orbits,

meaning that g ∼= g′ if and only if fi(g) = fi(g
′) for all i.

All this leads into the following näıve algorithm to check graph isomorphism,

based on invariant theory:
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Algorithm 2: Check graph isomorphism

input : Graphs g and g′

output: Boolean value of True if g ∼= g′ and False otherwise

1 Compute a generating set f1, ..., fr of In

2 if fi(g) = fi(g
′) for all i = 1, ..., r then

3 return True

4 else

5 return False

The problem of finding an efficient algorithm[5] which checks if two given graphs

are isomorphic is called the graph isomorphism problem. In fact, it is still not

known if this is an NP-hard problem, meaning we have yet to find (or know if there

exists) a polynomial time algorithm to check if two graphs are isomorphic.

In our case, if Algorithm 3 were to be a polynomial time algorithm, then, first of

all, the maximal degree and the number of terms of the fi need to be bounded by a

polynomial function. Secondly, the number of generators, r, must also be bounded

by some polynomial function, with respect to the number of vertices, n. Finally,

we must be able to compute In in polynomial time.

By Remark 2.6, we know that β(In) ≤
((n2)

2

)
, which is polynomial! However,

there can be up to n! terms in a polynomial, but we’re uncertain if they can be

avoided. For the second concern, it seems that even for minimal invariant sets, the

number, r, increases exponentially (see [Thi00]). The final concern is even worse

since the computation of In proves to be exceedingly difficult, with only In having

ever only been computed for n ≤ 5.

But even so, as study of In can still be fruitful as we can extract a lot of infor-

mation about graphs from this ring, such as enumeration of number of graphs and

even be used to prove that certain classes of graphs are reconstructable. Further-

more, for the invariant algebra of simple graphs, which we will encounter later on,

it is still not entirely known to which extend these concerns transfer.

3.1 The invariant ring In

We will now delve deeper into the structure of In as defined above.

Our first observation is that labelled multigraphs (i.e. a graph weighted in N),
g, may be uniquely encoded as the monomial,

xg :=
∏

{i,j}⊆{1,2,...,n}

x
wg({i,j})
{i,j} .

And it is clear that the set of such monomials corresponds one-to-one to the set of

all labelled multigraphs.

[5]By efficient algorithm, we mean an algorithm that runs in polynomial time.
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From this we can construct an obvious invariant by summing over all the ele-

ments in the orbit of g:

xg⊛ :=
∑

h∈S(2)
n ·g

xh. (3.1)

We call xg⊛ the exponential of g. Since it is the sum of the isomorphism class

of a given graph, it follows that the set of all exponentials correspond one-to-one

to the set of unlabelled multigraphs! In fact, the exponential of a graph is just to

the Reynolds operator, R, up to a factor of the size of the automorphism group

of g, |Aut(g)|, that is, xg⊛ = |Aut(g)|R(xg). Since exponentiation is the Reynolds

operator up to a scalar, we see that it is a projection to the invariant set. This

leads to the first easy theorem.

Theorem 3.1. Labelled graphs form a basis of C[Gn] and unlabelled graphs form a

basis of In, as vector spaces. Furthermore, dim(C[Gn]d) (resp. dim(Ind )) count the
number of labelled (resp. unlabelled) multigraphs which use exactly d edges.

Proof. We have that the set of monomials form a basis for C[Gn], and we saw above

that the set of such monomials correspond one-to-one to the set of labelled graphs

on n vertices. It follows from Example 2.2 that R(C[Gn]d) = Ind and because R
is linear it maps a basis to a basis. Thus the first claim follows from the fact that

exponentiation is R up to a scalar.

The second claim follows from the fact that the monomials xg, with∑
{i,j}⊆{1,2,...,n}

wg({i, j}) = d,

form a basis for C[Gn]d and so xg⊛ is a basis for Ind .

For large n, the computation of the exponential can be quite exhaustive. How-

ever, it has a lot of interesting properties. One such property is its ability to count

subgraphs.

Proposition 3.1. Let g and h be simple graphs on n vertices. Then the evaluation

xg⊛(h) counts the number of subgraphs of h which are isomorphic to g. We denote

the number, xg⊛(h), by s(g, h).

Proof. We have xg =
∏

e edge in g xe and so xg(h) is 1 if g is a subgraph of h and 0

otherwise. Since xg⊛ is the sum over the isomorphism class of g of such products it

follows that xg⊛(h) counts the number elements in the orbit of g which is a subgraph

of h. This is exactly the number of subgraphs of h which are isomorphic to g.

For example, if g has only one edge, then s(g, h) counts the number of edges in

h. If g is a closed loop visiting all vertices exactly once then s(g, h) is the number

of Hamiltonian cycles of h.
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3.1.1 The Hilbert series of In and group generators of S
(2)
n

Since S
(2)
n is a permutation group we can use the results of Section 2.5.1 to compute

the Hilbert series of In. By Theorem 3.1, this doubles as a generating series for the

number of unlabelled multigraphs.

We first introduce some notation.

Notation 3.1. For a partition, λ of n, we write λi for the number of factors i

contributes to the partition. For example, for n = 5, and λ = 1+1+1+2, we have

λ1 = 3, λ2 = 1, λ3 = 0, and so on. The partition λ induces a partition λ of
(
n
2

)
over S

(2)
n , which we call the induced partition. That is, λ is given by the cycle type

of the induced permutation, σ ∈ S
(2)
n , of any σ ∈ Cλ, with Cλ being the conjugacy

class tied to the partition λ.

The following technical lemma gives us an explicit way to compute λ from a

given λ.

Lemma 3.1. Let σ ∈ Sn and let σ ∈ S
(2)
n . Then every cyclic factor of σ arise in

one of the following ways:

i) If k odd, then each k-cycle contributes exactly k−1
2

k-cycles to σ.

ii) If k even, then each k-cycle contributes one k
2
-cycle and k−2

2
k-cycles to σ.

iii) Every pair, k-cycle and l-cycle, of cyclic factors of σ contribute gcd(i, j) fac-

tors of lcm(i, j)-cycles to σ.

The following proof is due to [Ker91].

Proof. i) Let k be odd. By symmetry, we may assume the k-cycle that we consider

is (1 2 ... k). Choose any 0 ≤ l ≤ k−1
2
. Then σ will contain the k-cycle,

({1, l + 1} {2, l + 2} ... {k − l, k} {1, k − l + 1} {2, k − l + 2} ... {l, k}).

These cycles are pairwise disjoint for differing l. These are all the cycles arising

from (1 2 ... k) that there are since k is odd, so

({1, l + 1} {2, l + 2} ...) = ({1, k − l + 1} {2, k − l + 2} ...).

ii) Let k = 2m be even. By symmetry, we may assume the k-cycle that we consider

is (1 2 ... 2m). Choose 0 ≤ l ≤ m. Then σ will contain the k-cycle,

({1, l} {2, l + 1} ... {k − l + 1, k} {1, k − l + 2} {2, k − l + 3} ... {l − 1, k}).

Furthermore σ will contain the k
2
-cycle,

({1,m+ 1} {2,m+ 2} ... {m, 2m}).
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iii) By symmetry, we may assume the pair we consider are (1 ... k)(k+1 ... k+m).

Then σ will contain the product of disjoint cycles,

({1, k + l} {2, k + l + 1} ...)({1, k + l + 1} {2, k + l + 2}} ...)...,

each factor being a lcm(k,m)-cycle and thus there being a total of gcd(k,m) of

them.

Remark 3.1. The proof of Lemma 3.1 is stronger than the actual lemma, since

it gives a recipe to construct σ. This fact can be used to construct generators for

S
(2)
n . Indeed, since Sn is famously generated by (1 2) and (1 2 · · · n), we need only

follow the above proof twice to the get generators (1 2) and (1 2 · · · n) of S(2)
n .

This leads us to the next ’algorithm’ which gives us generators for S
(2)
n . This

algorithm is our own idea, design and work, however it is quite likely that this has

already been created before.

In the following algorithm we let Sn be the symmetric group acting on {1, 2, ..., n}
and let m =

(
n
2

)
. We label the two-sets {i, j} with respect to the lexicographic or-

der.[6] Note also that we put commas in the cycles for readability.

Algorithm 3: Construct generators of S
(2)
n

input : n ≥ 3

output: Elements, g1 and g2, generating S
(2)
n

1 g1 ← (2, n)(3, n+ 1)(4, n+ 2) · · · (n− 1, n)

2 g2 ← ()

3 if n is even then

4 for i ∈ {1, ..., n−2
2
} do

5 g2 ← g2(i, i+(n− 1), i+(n− 1)+ (n− 2), · · · , i+(n− 1)+ · · ·+(n−
i), (n−i)+(n−1), (n−i)+(n−1)+(n−2), · · · , (n−i)+(n−1)+· · ·+i)

6 g2 ← g2(n/2, n/2 + (n− 1), · · · , n/2 + (n− 1) + · · ·+ (n− n/2)

7 if n is odd then

8 for i ∈ {1, ..., n−1
2
} do

9 g2 ← g2(i, i+(n− 1), i+(n− 1)+ (n− 2), · · · , i+(n− 1)+ · · ·+(n−
i), (n−i)+(n−1), (n−i)+(n−1)+(n−2), · · · , (n−i)+(n−1)+· · ·+i)

10 return g1, g2

Proof of correctness. We first consider g1 = (1, 2). Clearly {a, b} is fixed if a = 1

and b = 2 or if b > a > 2. The elements which not fixed are the sets, {1, a}, with
3 ≤ a ≤ n, which are labelled by 2, 3, ..., n − 1. Since (1, 2) maps {1, a} to {2, a},

[6]E.g. if n = 4 we label {1, 2} by 1, {1, 3} by 2, {1, 4} by 3, {2, 3} by 4, {2, 4} by 5, and {3, 4}
by 6.
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which in terms of the labelling means that it maps a − 1 to n − 1 + a − 1. From

this follows g1.

Next, we consider g2 = (1, 2, ..., n). Note that in terms of our labelling we

have that {1, 2} is labelled by 1, {2, 3} by n, {3, 4} by n + (n − 1), {4, 5} by

n+ (n− 1) + (n− 2), and so on. So in general, if {a, b}, with a < b < n, is labelled

by i, then {a + 1, b + 1} is labelled by i + (n − a). The only other case is {a, b},
with a < b = n, which is mapped by (1, 2, ..., n) to {1, a + 1} which is labelled by

a. From this along with the proof of Lemma 3.1 follows g2.

We have implemented the above procedure in SAGEMATH, and the implementation

itself is in our opinion a tiny bit more legible than the above. See Appendix A,

Listing 8.

This algorithm allows us to explicitly construct S
(2)
n as a permutation group in

SAGEMATH. Because of SAGEMATH’s many feature, this opens the door to many of

the pre-built methods of permutation groups, that SAGEMATH has. For example,

SAGEMATH allows us to compute the subgroups and homology/cohomology groups

of permutation groups.[7] It even allows us to compute the Hilbert series, however

the following is much more efficient.[8] Moreover, the explicit construction allows

us to use King’s algorithm on In!
Since the conjugacy classes of Sn are indexed by the partitions of n, we can

combine Lemma 2.2 with Corollary 2.4 to get a very explicit formula for the Hilbert

series of In.

Formula 3.1. Let Cλ be the conjugacy class corresponding to the partition, λ of n,

and let λ denote the induced partition over S
(2)
n . Then the Hilbert series of In is

given by

H(In, z) = 1

n!

∑
λ

|Cλ|
1∏

i(1− zi)λi
,

where we sum over all partitions λ of n.

Using this corollary with Lemma 3.1, we implement an algorithm for computing

H(In, z) in SAGEMATH. The source code can found in Appendix A, Listing 11.

Remark 3.2. From Remark 2.7 and from the theorem of [HP73, p.88], one again

find, through different means, that dim(C[Vn]
G
d ) counts the number of multigraphs

on n vertices with exactly d edges.

[7]See doc.sagemath.org/html/en/reference/groups/sage/groups/perm gps/permgroup.html

for the full documentation on support SAGEMATH has on permutation groups.
[8]Indeed, it takes several hours to for the SAGEMATH built-in function to compute the Hilbert

series of I9, while our own custom implementation below only takes us a couple of seconds. (We

remark this this is not due to the fact that SAGEMATH computes the entire group as it only takes

∼1.2 seconds to compute S
(2)
9 ).

https://doc.sagemath.org/html/en/reference/groups/sage/groups/perm_gps/permgroup.html
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3.1.2 Computing invariants of In explicitly

Using Algorithm 3 to get generators of S
(2)
n . We can construct the group as a

permutation group object by plugging the generators into the SAGEMATH function,

PermutationGroup. We then plug this group into our implementation, Listing 5,

of King’s algorithm (Algorithm 1) to compute a minimal invariant set of In.

Example 3.1. The algebra I4 has a minimal generating set consisting of

f1 =
1
6
(x1 + x2 + x3 + x4 + x5 + x6)

f2 =
1
6
(x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6)

f3 =
1
6
(x3

1 + x3
2 + x3

3 + x3
4 + x3

5 + x3
6)

f4 =
1
6
(x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6)

f5 =
1
6
(x5

1 + x5
2 + x5

3 + x5
4 + x5

5 + x5
6)

f6 =
1
3
(x1x6 + x2x5 + x3x4)

f7 =
1
24
(x2

1x2 + x2
1x3 + x2

2x1 + x2
2x3 + x2

3x1 + x2
3x2 + x2

1x4 + x2
1x5

+ x2
5x1 + x2

4x5 + x2
5x1 + x2

5x4 + x2
2x4 + x2

2x6 + x2
4x2 + x2

4x6

+ x2
6x2 + x2

6x4 + x2
3x5 + x2

3x6 + x2
5x3 + x2

5x6 + x2
6x3 + x2

6x5)

f8 =
1
24
(x3

1x2 + x3
1x3 + x3

2x1 + x3
2x3 + x3

3x1 + x3
3x2 + x3

1x4 + x3
1x5

+ x3
5x1 + x3

4x5 + x3
5x1 + x3

5x4 + x3
2x4 + x3

2x6 + x3
4x2 + x3

4x6

+ x3
6x2 + x3

6x4 + x3
3x5 + x3

3x6 + x3
5x3 + x3

5x6 + x3
6x3 + x3

6x5)

f9 =
1
4
(x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6)

The computation of this set takes us around 0.37 seconds to compute on our

Intel(R) Core(TM) i5-6600K CPU @ 3.50GHz processor. This is quite good and

proves the power of King’s algorithm, since our implementation is very näıve with

little to no optimizations.

However, the big challenge is to compute I5, which is a significantly more intense

computation. In [Thi00], Thiery and Kemper managed to compute this set, using

a permutation group specific algorithm and ad hoc methods. Here we recompute

it, using King’s algorithm.

Example 3.2. The algebra I5 has a minimal generating set consisting of 56 poly-

nomials of degree at most 9. It’s degree vector is [1, 2, 4, 7, 10, 13, 13, 4, 2], where

index d is the number of invariants of degree d.

The full list of the invariants, in a SAGEMATH-friendly format, can be found on

our website at www.maraha.dk/invariants of I5.txt and also in latex format at

www.maraha.dk/invariants of I5 latex.txt.

The bottleneck of the procedure is the computation of the truncated Gröbner

basis, but with the proper strategy (Macaulay2:F4), we still managed to compute

the invariants of I5 in 8 hours and 12 minutes on the same hardware as the previous

https://www.maraha.dk/invariants_of_I5.txt
https://www.maraha.dk/invariants_of_I5_latex.txt
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example.[9] By decomposing the generators of S
(2)
n , and using MAGMAs strategy of

computing Gröbner bases, King ([Kin13]) managed to compute In in only 37.5

seconds!

3.1.3 When is In Gorenstein?

Recall the necessary and sufficient condition for an algebra to be Gorenstein, seen

in Theorem 2.6. We’re interested in whether or not In satisfies the conditions,

and since we already know how to compute H(In, z), we can also easily compute

H(In, 1
z
), and thus construct a while loop which attempts to find an r satisfying

Theorem 2.6. Doing this for all 2 ≤ n ≤ 20, we find that when n is even it is

Gorenstein, with r = 0, and when n is odd the loop does not seem to terminate.

See Listing 10 for how we executed the test.

Thus, from this experimentation we formulate and prove the following theorem,

which is a satisfactory answer to our question.

Theorem 3.2. If n is even then In satisfies Theorem 2.6 with r = 0. If n is odd

then In never satisfies Theorem 2.6. Thus, In is Gorenstein if and only if n is

even.

Proof. Let d =
(
n
2

)
be the Krull dimension of In, and letMλ be an arbitrary element

of Cλ. Then using Theorem 2.6 on Formula 3.1 we find that

H(In, 1
z
) =

1

n!

∑
λ

|Cλ|
1∏

i(1−
1
zi
)λi

=
1

n!

∑
λ

|Cλ|
1∏

i(
1−zi

−zi
)λi

=
1

n!

∑
λ

|Cλ|
∏

i(−zi)λi∏
i(1− zi)λi

=
1

n!

∑
λ

|Cλ|
(−1)d(−1)

∑
i λiz

∑
i iλi∏

i(1− zi)λi

= (−1)dzd 1
n!

∑
λ

|Cλ|
sign(Mλ)∏
i(1− zi)λi

,

where we used that
∑

i iλi =
(
n
2

)
= d and (−1)

∑
i λi = sign(Mλ).

Hence, for the equality above to hold, we must have sign(Mλ) = 1, for all λ.

Since we may decompose into transpositions, and a transposition, Tλ, of 2 vertices

becomes a transposition, Tλ, of n− 2 pairs of edges, we have that sign(Mλ) = 1, if

n is even and sign(Mλ) = sign(Mλ), if n is odd. The result thus follows.

[9]We also attempted to compute a minimal invariants set of I5 using SINGULAR’s built in

implementation of King’s algorithm, however it got stuck computing the Gröbner basis at degree

8 and after 100 hours of computing, we killed the process. This shows how important which

strategy one uses is.
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Remark 3.3. From the proof above, we also saw that det(Mλ) = sign(Mλ) = 1,

which means that S
(2)
n is a subgroup of the special linear group, SL(V ).

Remark 3.4. If n is even then In contains no pseudo-reflections. This fact follows

immediately from the above, together with [Sta78, theorem 5.5]

The proof above it our own, however all of this (and more) was already known

from [Thi00] where Watanabe’s theorem was used.

3.2 The restricted invariant ring In|s
While multigraphs are interesting in their own right, the stars of graph theory are

of course simple graphs. In this section we investigate the invariant ring of, what we

call, s-graphs ; graphs where we allow a maximum of s edges between two vertices.

In particular, for s = 1 we obtain simple graphs, and for s =∞ we recover In from

the previous section. While everything in this section is already known for s = 1

and s =∞, we haven’t seen it presented in the generality which we present it here.

Fix n, the number of vertices on our graph. Let m =
(
n
2

)
denote the number of

possible edges and set V = Cm = Gn a vector space. Using the same set-up as in

the beginning of Section 3, we now restrict the functions wg to only take on values

in {0, 1, 2, ..., s}, such that there is a bijection between such functions and s-graphs.

Denote by V |s the set of all s-graphs, i.e.

V |s = {
∑m

i=0 giei | gi ∈ {0, 1, 2, ..., s}} ⊂ V, (3.2)

which is clearly an affine variety and it’s coordinate ring is given by

C[V |s] ∼= C[x1, ..., xm]/I|s (3.3)

where

I|s := I(V |s) =
〈 s∏
k=0

(x1 − k),
s∏

k=0

(x2 − k), ...,
s∏

k=0

(xm − k)
〉
. (3.4)

Notice that we have that, as vector spaces, C[V |s] ∼= C(s+1)m , with basis consist-

ing of all monomials, xℓ1
1 x

ℓ2
2 · · ·xℓm

m , with 0 ≤ ℓm ≤ s. This is reflected in the fact

that there are exactly (s+ 1)m labelled s-graphs on n vertices.

This next theorem is a generalisation of a theorem of [Bed15].

Theorem 3.3. Let I|s be as above. Then

i) C[V |s] ∼= C[x1, ..., xm]/I|s

ii) In|s := C[V |s]S
(2)
n ∼= In/(I|s ∩ In)

Proof. i) This is just Eq. (3.3).



3.2 The restricted invariant ring In|s 34

ii) Let π : C[V ]→ C[V |s] be the map given by

π(xs+1
i ) = xs+1

i −
s∏

k=0

(xi − k) for all 1 ≤ i ≤ m,

and π(xℓ
i) = xℓ

i if ℓ ≤ s. This is clearly surjective with kernel equal to I|s.

Hence, it will suffice to show that π is S
(2)
n -equivariant, since then by Proposi-

tion 2.2 the invariants of C[V ] then will be mapped surjectively to the invariants of

C[V |s] under π, the image of which is clearly In/(I|s ∩ In).

Without loss of generality, we need only consider monomials. Pick any σ ∈ S
(2)
n

and any monomial xℓ1
1 x

ℓ2
2 · · ·xℓm

m . The result is clear for ℓi < s + 1, so assume

ℓi = s+ 1.

π(σ(xs+1
1 xs+1

2 · · ·xs+1
m )) = π(xs+1

σ(1)x
s+1
σ(2) · · ·x

s+1
σ(m))

=

(
xs+1
σ(1) −

s∏
k=0

(xσ(1) − k)

)
· · ·

(
xs+1
σ(m) −

s∏
k=0

(xσ(m) − k)

)

= σ

((
xs+1
1 −

s∏
k=0

(x1 − k)

)
· · ·

(
xs+1
m −

s∏
k=0

(xm − k)

))
= σ(π(xs+1

1 xs+1
2 · · ·xs+1

m ))

The proof for (ii) will work for any I|s = ⟨p(x1), ..., p(xk)⟩, with p ∈ C[t] being
any monic polynomial of degree s+1. In fact, most (if not all) of the following results

appear to work for any such ideal (perhaps with the exception of m(t) = ts+1).

3.2.1 Hilbert Series of In|s

While In|s is no longer graded, it is still a connected semi-graded, meaning we have

i) Decomposition into vector spaces, In|s =
⊕

d≥0 Ind |s.

ii) For every r, d ≥ 0 we have Ind |sInr |s ⊆ In0 |s ⊕ · · · ⊕ Inr+d|s.

iii) In0 |s = C.

So, one may still ask about the nature of the Hilbert series.

Of course since V is no longer a C-vector space we cannot use Molien’s formula.

Luckily, the next two theorems tell us what the Hilbert series encodes, and how

we we can effectively compute that which it encodes. Thus, by combining the two

theorems we find a nice concise description of the Hilbert series. For s = 1, this

description was the main theorem of [Bed15], however our proof is much shorter

when given the following lemma and theorem, the first of which is proved (for s = 1)

in their paper and the second is stated.
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Lemma 3.2. The dimension of the d-graded part, dim(Ind |s), equals the number of

s-graphs on n vertices with exactly d edges.

Proof. The proof is analogous to that of Theorem 3.1. Indeed, as before, a labelled

s-graph, g, which uses exactly d edges, can be encoded as the monomial,

xg :=
∏

{i,j}⊆{1,2,...,n}

x
wg({i,j})
1 ,

with
∑

{i,j}⊆{1,2,...,n}wg({i, j}) = d and wg({i, j}) ≤ s.

Clearly, C[V |s]d has basis of all monomials whose exponent sums to d, and so we

find a clear one-to-one correspondence between such monomials and s-graphs which

use exactly d edges. Since R(xg) is a scaled sum of the elements of the isomorphism

class of g, we have, as before, that R maps a labelled graph to its corresponding

unlabelled graph.

Thus, R maps the basis for C[V |s]d, which, as noted, consists of all labelled s-

graphs, encoded as monomials, which use exactly d edges, to a basis of C[V |s]S
(2)
n

d =

Ind |s, which, as remarked above, will consist of the set unlabelled s-graphs, which

use exactly d edges.

Although being quite an easy generalization we haven’t seen Lemma 3.2 above

written and proved in any literature we’ve come by. Only versions for s = 1 or

s =∞ have we seen being noted (e.g. in [Bed15]).

Note that the this result implies that Ind |s = 0 for d > s
(
n
2

)
, since an s-graph

can hold at most s
(
n
2

)
edges.

The second theorem was given in [HP73, p.84]. But, as before, we generalize it

from simple graphs to the context of s-graphs.

Theorem 3.4. The polynomial gn(z) which enumerates the number of s-graphs is

given by

gn(z) =
1

n!

∑
λ

|Cλ|
∏
i

(
s∑

k=0

zk·i

)λi

where we sum over all partitions, λ, of n, and λ denotes the induced partition over

S
(2)
n . I.e. the coefficient of zd counts the number of s-graphs on n vertices which

use exactly d edges.

Proof. Recall the notation and definitions of Section 1.2. We will first show that

gn(z) = Z(S
(2)
n ,
∑s

k=0 z
k), (3.5)

and then show that

Z(S(2)
n ) =

1

n!

∑
λ

|Cλ|
∏
i

s
iλ2i+1

2i+1

∏
i

(sis
i−1
2i )λ2i

∏
r<t

s
gcd(r,t)λrλt

lcm(r,t) , (3.6)
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since then the result will follow from Lemma 3.1 using the Notation 3.1.

Let X = {1, 2, ..., n} and X(2) = { {i, j} | i, j ∈ X}. Define the weight function

w on Y = {0, 1, 2, ..., s} by setting w(k) = k, for all k ∈ Y , so that c(z) =
∑s

k=0 z
k.

Remark that any s-graph, g, can be encoded as a function, fg : X
(2) → Y , and that

any two isomorphic graphs g and g′ will have w(fg) = w(fg′), since they will by

definition be in the same orbit of ES
(2)
n . Remark also that the weight of an orbit

of ES
(2)
n is simply the number of lines of the graph, corresponding to that orbit.

Thus, since Ck counts the number of orbits of weight k, Eq. (3.5) then follows from

Pólya’s Enumeration Theorem.

It remains to derive Eq. (3.6). Since S
(2)
n is induced from Sn it follows by

definition of the cycle index that Z(Sn) gives rise to Z(S
(2)
n ) by the exchange

sλ1
1 sλ2

2 · · · sλn
n → sλ1

1 sλ2
2 · · · sλn

n as described in Lemma 3.1. Writing sλi
i in terms

of sλi
i and using Example 1.1 we get Eq. (3.6).

Corollary 3.1. We get the following two descriptions of the Hilbert series of In|s:

i) H(In|s, z) =
1

n!

∑
λ

|Cλ|
∏
i

(
s∑

k=0

zk·i

)λi

ii) H(In|s, z) =
1

n!

∑
M∈S(2)

n

det(idn − zs+1M)

det(idn − zM)

Proof. We have

H(In|s, z) =
1

n!

∑
λ

|Cλ|
∏
i

(
s∑

k=0

zk·i

)λi

=
1

n!

∑
λ

|Cλ|
∏
i

(
1− z(s+1)·i

1− zi

)λi

=
1

n!

∑
λ

|Cλ|
∏

i(1− z(s+1)·i)λi∏
i(1− zi)λi

=
1

n!

∑
M∈S(2)

n

det(idn − zs+1M)

det(idn − zM)

where the first equality follows from combining Lemma 3.2 and Theorem 3.4 and

the last equality follows from Lemma 2.2.

In particular, for s = 1, we get the following formula for the Hilbert series in

the case of simple graphs, which was the main theorem of [Bed15]:

H(In|1, z) =
1

n!

∑
M∈S(2)

n

det(idn − z2M)

det(idn − zM)
.
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Furthermore, if we take the limit s → ∞ we recover the formula we found for

the Hilbert series of In(= In|∞), since we have

H(In|∞, z) =
1

n!

∑
λ

|Cλ|
∏
i

(
∞∑
k=0

zk·i

)λi

=
1

n!

∑
λ

|Cλ|
∏
i

(
1

1− zi

)λi

=
1

n!

∑
λ

|Cλ|
1∏

i (1− zi)λi
= H(In, z),

where we used the closed form of the geometric series in the second equality.

We saw in Remark 2.7 how the cycle index was related to Hilbert Series via 1
1−z

for any permutation group. This fact seems to generalise:

Remark 3.5. Combining the definitions of the figure counting series, function

counting series, Pólya’s Enumeration Theorem and the proof of Theorem 3.4 we see

that all our argumentation above works for a general permutation group G. Thus

we have that

H(C[V |s]G, z) = Z(G,
∑s

k=0 z
k),

with V |s defined as in Eq. (3.2).

Furthermore, by definition of Z(G), and because cycle types are constant within

conjugacy classes, this also implies that Corollary 3.1 generalises to

H(C[V |s]G, z) =
1

|G|
∑
C∈C

|C|
∏
i

(
s∑

k=0

kk·i

)λi(σC)

=
1

|G|
∑
M∈G

det(id− zs+1M)

det(id− zM)
,

for any permutation group, G.

This result is as far as we know entirely new. However, we think that we may

go even further. Indeed, the second description of the Hilbert series above does not

immediately ’depend on’ Lemma 2.2, so we have a hunch that this description may

be true for any finite group:

Question 3.1. Is it true that, for any finite group, G, we have

H(C[V |s]G, z) =
1

|G|
∑
M∈G

det(id− zs+1M)

det(id− zM)
?

Due to time constraints, and the sheer difficulty in constructing examples, we

have not tested this formula for any non-permutation groups.
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Example 3.3. Using Remark 3.5 on the usual representation of Sn, one finds that

H(C[V |s]Sn , q) = [s+n
n ]

where [s+n
n ] is the q-binomial coefficients, defined by:

[s+n
n ] =

∏s+n
k=1(1− qk)∏n

k=1(1− qk)
∏s

k=1(1− qk)
.

It is well known that the coefficient of qr of a q-binomial coefficients is the

number of partitions of r with n or fewer parts each less than or equal to s.

Example 3.4. Let A3 be usual representation of the alternating group of degree

3. It is well known that the coefficient of zn of H(C[x, y, z]A3 , z) is the number of

solutions to x+ y + z = 0 (mod n) with 0 ≤ x ≤ y ≤ z < n.[10]

It then appears that the coefficient of zn of H(C[V |s]A3 , z) is the number of

solutions to x + y + z = 0 (mod n) with 0 ≤ x ≤ y ≤ z < min{n, s + 1}. We have

yet to prove this, but we have found that the coefficient of zn for n > 3s is 0, and

is equal to the corresponding coefficient of H(C[C3]A3 , z) when n ≤ s. This aligns

with what we would expect.

Loosely speaking, it seems that if H(C[V ]G, z) enumerates some class of objects,

where the component members have some unbounded weight (e.g. the size of each

part of partition, or the weight of the edges in a multi-graph), then H(C[V |s]G, z)
enumerates the same class of objects, but with the weights now bounded by s.

[10]See A007997 in The On-Line Encyclopedia of Integer Sequences (OEIS).

https://oeis.org/A007997
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3.2.2 Roots of H(In|s, z)

For a breath of fresh air, we now shoehorn in some curious plots for the visually

inclined, even though we haven’t deduced much about this oddity. You see, the

Hilbert series, H(In|s, z), are just polynomials with positive integer coefficients,

and so we may compute and plot the roots of them. This yielded a quite peculiar

pattern, which looks to converge towards some fractal-like pattern as s → ∞. For

example if we fix n = 10 and vary s we get the following series of images:

If we fix s = 1 and vary n, we get another series of images, which also seems to

converge to some shape. However, as n increases, the size of the shape grows:

We have put animated versions of these, for differing n and s, on our website.

• For n fixed, see: www.maraha.dk/fixed n.html

• For s fixed, see: www.maraha.dk/fixed s.html

Some remarks are in order about H(In|s, z) = atz
t+ · · ·+a1z+a0, which partly

explain the symmetries.

• Since the coefficients are real, the conjugate of a root is also a root. Hence

roots are mirrored over the real axis.

• Since we have ai = at−i we have that if z is a root then 1
z
is also a root. Hence

the roots are ’mirrored’ over the unit circle.

So we see that it suffice to consider only the roots in the upper unit semi-circle.

https://www.maraha.dk/fixed_n.html
https://www.maraha.dk/fixed_s.html
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3.2.3 Computing invariants of In|1 explicitly

The space of graphs weighted in {1, 2, ..., s} inject into C-weighted graphs, and

so if we have a generating set of invariants, f1, ..., fk, of C-weighted graphs, then

the image, π(fi), ..., π(fk), of the fi’s clearly generate the invariant algebra of In|s,
where π : C[V ] → C[V |s] is the quotient map. (This also clear from the proof

of Theorem 3.3). Of course, this set of invariants may be much smaller, since it

may happen that π(fi) = π(fj). However, we found that the image of a generating

set need not necessarily be minimal, even if f1, ..., fk is minimal, as the following

example will show.

For ease of notation we will henceforth denote π(f) by f̄ .

Example 3.5. Recall the minimal generating set of I4 from Example 3.1. We see

that for s = 1 we have that x̄i
p = x̄i, and so In|1 will be generated by the four

invariants, f̄1, f̄6, f̄7, f̄9, since f̄1 = f̄2 = f̄3 = f̄4 = f̄5 and f̄7 = f̄8.

However, f̄6 is superfluous since we can write it as a combination of the others,

f̄6 = 6f̄1
2 − f̄1 − 4f̄7.

Note that, this relation was found through sheer trial and error.

We believe the set {f̄1, f̄7, f̄9} to be minimal.
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Example 3.6. We may do the same as in Example 3.5, but for I5. If we map the
minimal generating set, which we found in Example 3.2, through π (with s = 1 as
before), we get the following generating set for I5|1.

f̄1 = 1
10 (x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9)

f̄2 = 1
30 (x0x1 + x0x2 + x1x2 + x0x3 + x1x3 + x2x3 + x0x4 + x1x4 + x0x5 + x2x5 + x4x5+

x0x6 + x3x6 + x4x6 + x5x6 + x1x7 + x2x7 + x4x7 + x5x7 + x1x8 + x3x8 + x4x8+

x6x8 + x7x8 + x2x9 + x3x9 + x5x9 + x6x9 + x7x9 + x8x9)

f̄3 = 1
60 (x0x2x4 + x1x2x4 + x0x3x4 + x1x3x4 + x0x1x5 + x1x2x5 + x0x3x5 + x2x3x5 + x1x4x5+

x2x4x5 + x0x1x6 + x0x2x6 + x1x3x6 + x2x3x6 + x1x4x6 + x3x4x6 + x2x5x6 + x3x5x6+

x0x1x7 + x0x2x7 + x1x3x7 + x2x3x7 + x0x4x7 + x2x4x7 + x0x5x7 + x1x5x7 + x4x6x7+

x5x6x7 + x0x1x8 + x1x2x8 + x0x3x8 + x2x3x8 + x0x4x8 + x3x4x8 + x4x5x8 + x0x6x8+

x1x6x8 + x5x6x8 + x2x7x8 + x3x7x8 + x5x7x8 + x6x7x8 + x0x2x9 + x1x2x9 + x0x3x9+

x1x3x9 + x0x5x9 + x3x5x9 + x4x5x9 + x0x6x9 + x2x6x9 + x4x6x9 + x1x7x9 + x3x7x9+

x4x7x9 + x6x7x9 + x1x8x9 + x2x8x9 + x4x8x9 + x5x8x9)

f̄4 = 1
10 (x0x1x4 + x0x2x5 + x0x3x6 + x1x2x7 + x4x5x7+

x1x3x8 + x4x6x8 + x2x3x9 + x5x6x9 + x7x8x9)

f̄5 = 1
20 (x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3 + x0x4x5 + x0x4x6 + x0x5x6 + x4x5x6+

x1x4x7 + x2x5x7 + x1x4x8 + x3x6x8 + x1x7x8 + x4x7x8 + x2x5x9 + x3x6x9+

x2x7x9 + x5x7x9 + x3x8x9 + x6x8x9)

f̄6 = 1
60 (x0x1x2x4 + x0x1x3x4 + x0x1x2x5 + x0x2x3x5 + x0x1x4x5 + x0x2x4x5 + x0x1x3x6+

x0x2x3x6 + x0x1x4x6 + x0x3x4x6 + x0x2x5x6 + x0x3x5x6 + x0x1x2x7 + x1x2x3x7+

x0x1x4x7 + x1x2x4x7 + x0x2x5x7 + x1x2x5x7 + x0x4x5x7 + x1x4x5x7 + x2x4x5x7+

x4x5x6x7 + x0x1x3x8 + x1x2x3x8 + x0x1x4x8 + x1x3x4x8 + x0x3x6x8 + x1x3x6x8+

x0x4x6x8 + x1x4x6x8 + x3x4x6x8 + x4x5x6x8 + x1x2x7x8 + x1x3x7x8 + x4x5x7x8+

x4x6x7x8 + x0x2x3x9 + x1x2x3x9 + x0x2x5x9 + x2x3x5x9 + x0x3x6x9 + x2x3x6x9+

x0x5x6x9 + x2x5x6x9 + x3x5x6x9 + x4x5x6x9 + x1x2x7x9 + x2x3x7x9 + x4x5x7x9+

x5x6x7x9 + x1x3x8x9 + x2x3x8x9 + x4x6x8x9 + x5x6x8x9 + x1x7x8x9 + x2x7x8x9+

x3x7x8x9 + x4x7x8x9 + x5x7x8x9 + x6x7x8x9).

As before, this is not minimal! Indeed, f̄3 is superfluous, since we have the

relation, which, as before, we found through sheer trial and error,

f̄3 =
1

18
(−50f̄1

3
+ 15f̄1

2
+ 90f̄1f̄2 − f̄1 − 18f̄2 − 6f̄4 − 12f̄5).

We believe that {f̄1, f̄2, f̄4, f̄5, f̄6} is a minimal generating set for I5|1, however,
we have not proved this, nor does it seem trivial to prove.

Since In|1 only uses square-free monomials, we thought that King’s algorithm

may be specialized to produce invariants of this family of invariant algebras. Through

some naive experimentation of altering King’s algorithm, we found the following

algorithm. This algorithm executes all the same procedures, but does so in the

quotient ring. The only exception is the construction of M , where we need to lift

to the polynomial ring to check division. Let us first introduce some notation.
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For f ∈ C[V ] we denote by f̄ the image of the quotient map π : C[V ] →
C[V ]/I|1. We denote by lift(f̄) the natural lift from C[V ]/I|1 to C[V ]. Note that,

f is equal to lift(f̄) if and only if every term of f is square-free in the xi’s. Finally,

we denote by Md the square-free monomials of degree d in C[V ].

Algorithm 4: King’s algorithm for simple graphs

input : Permutation group, S
(2)
n , and upper bound, D, on β(In|1)

output: A minimal generating set, S, of In|1
1 S ← ∅
2 G ← ∅
3 for d from 1 to D do

4 G ← d-truncated Gröbner basis of ⟨S⟩ (over C[Gn]/I|s)
5 M ← {m ∈Md | ∄g ∈ G such that LM(lift(g)) divides m}
6 if M = ∅ then break;

7 for t ∈M do

8 f ← R(t)
9 if ḡ ← NFG(f̄) ̸= 0 then // Normal form taken over C[V ]/I|1

10 Add f̄ to S

11 Add ḡ to G

12 return S

Conjecture 3.1. Algorithm 4 is correct.

We have no idea how to prove this, given the authors limited knowledge on

the area of Gröbner bases in quotient rings. However, we have implemented this

algorithm (Listing 12), and it yields the same generating sets for n = 4 and n = 5

as the generating sets we found in Example 3.5 and Example 3.6. Of course, we are

not entirely confident, that the sets of those examples actually are minimal.

We have absolutely no idea why this works or if this is simply just a fluke. But

we find it miraculous that it yields the same two results, that we found by hand.

Assuming Conjecture 3.1 is true, we can now compute the invariants of I6|1. A com-

putation never done before! The full list of the invariants computed can be found on

our website at www.maraha.dk/Invariants I6s1.txt.[11] We also computed I7|1
up to and including degree 5; see www.maraha.dk/Invariants I7s1.txt.

Perhaps Algorithm 4 can be generalized to s > 1. However testing this would

require the exhaustive recomputations of Example 3.5 and Example 3.6 for s > 1.

Furthermore, since we made no changes to King’s algorithm, which were specific

to S
(2)
n , to arrive at Algorithm 4, we believe that, if Conjecture 3.1 is true, then the

following conjecture is true, as well.

Conjecture 3.2. Algorithm 4 works for any finite group G.

[11]The degree vector of this set is [1, 1, 3, 3, 3, 11].

https://www.maraha.dk/Invariants_I6s1.txt
https://www.maraha.dk/Invariants_I7s1.txt
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We tested this extended conjecture, by using the algorithm on the symmetric

group, Sn, for 1 ≤ n ≤ 9. For all such n, it returns only the polynomial, 1
n
(x1 +

x2+ · · ·+xn), which is correct, since the set, { 1
n
(x1+ · · ·+xn), ...,

1
n
(xn

1 + · · ·+xn
n)},

is a minimal generating set, and the image of this set under the quotient map is

clearly just 1
n
(x1 + x2 + · · ·+ xn).

3.3 Number of minimal generators

Let In<d be the subalgebra of In generated by all invariants of degree < d, and set

s0(In) := 0 and sd(In) = dim Ind − dim(In<d)d. Then the series,

s(In, z) :=
∞∑
d=0

sd(In)zd,

has degree β(In), and the coefficients, sd(In), count the number of invariants of

degree d in a minimal generating set. Algorithmically these two pieces of informa-

tion would have great implications, since they would serve as a stopping point and

an indicator for when to jump to the next iteration.

Because the d’th entry in the inverse Euler transformation of a sequence, {ak}k,
only depends on a1, ..., ad, and due to Theorem 1.3, we came up with the following

conjecture.

Conjecture 3.3. Let {and}d be the sequence of coefficients of H(In, z) and {bnd}d
be its inverse Euler transformation. Then

sd(In) = bnd

for all d ≤ n+ 2.

We test the conjecture on In, for 3 ≤ n ≤ 7, and verify that the conjecture holds

in this range. The values of sd for n = 6 and n = 7 are borrowed from [Thi00].

d = 1 2 3 4 5 6 7 8 9 10 11 12

sd(I3) 1 1 1 0 0 0 0 0 0 0 0 0

{b3d}d 1 1 1 0 0 0 0 0 0 0 0 0

sd(I4) 1 2 3 2 1 0 0 0 0 0 0 0

{b4d}d 1 2 3 2 1 0 -1 -2 -1 -1 1 1

sd(I5) 1 2 4 7 10 13 13 4 2 0 0 0

{b5d}d 1 2 4 7 10 13 13 2 -22 -76 -147 -221

sd(I6) 1 2 5 10 21 41 74 121 162 ?? ?? ??

{b6d}d 1 2 5 10 21 41 74 121 162 90 -317 -1601

sd(I7) 1 2 5 11 28 72 172 414 ?? ?? ?? ??

{b7d}d 1 2 5 11 28 72 172 414 946 1950 3496 4570

Table 1: Comparing sd(In) with the inverse Euler transformation of H(In, z)
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Furthermore, we found that it also seemingly works for In|1 as well. However,

in this case the bound in d is a bit smaller.

Conjecture 3.4. Let {and}d be the sequence of the coefficients of H(In|1, z) and

{bnd}d be its inverse Euler transformation. Then

sd(In|1) = bnd

for all d ≤ n− 1.

As before, we compute for 3 ≤ n ≤ 7, and verify that the conjecture agrees with

the values found in Section 3.2.3, assuming the Conjecture 3.1 is true.

d = 1 2 3 4 5 6 7 8 9 10 11 12

sd(I3|1) 1 0 0 0 0 0 0 0 0 0 0 0

{b3d}d 1 0 0 0 0 0 0 0 0 0 0 0

sd(I4|1) 1 1 1 0 0 0 0 0 0 0 0 0

{b4d}d 1 1 1 -2 -2 0 0 0 0 0 0 0

sd(I5|1) 1 1 2 1 0 0 0 0 0 0 0 0

{b5d}d 1 1 2 1 -2 -5 -4 1 11 0 0 0

sd(I6|1) 1 1 3 3 3 11 0 0 0 0 0 0

{b6d}d 1 1 3 3 3 -4 -12 -21 -13 18 72 106

sd(I7|1) 1 1 3 4 8 ?? ?? ?? ?? ?? ?? ??

{b7d}d 1 1 3 4 8 9 1 -22 -59 -114 -122 -7

Table 2: Comparing sd(In|1) with the inverse Euler transformation of H(In|1, z)

Of course, the values of sd are merely conjectures themselves, but since the

two conjectures agree on the values, it seems to add to our confidence that both

Conjecture 3.3 and Conjecture 3.1 are true.
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4 Reconstructability

Given a (simple or multi-edged) graph, g, on n vertices, we may consider the graph,

g\v, on n− 1 vertices, which is induced by removing vertex, v ∈ V , and all incident

edges. We call g\v the v-vertex-deleted subgraph of g. The multiset[12], deck(g), of

all isomorphism classes of all vertex-deleted subgraphs, is called the deck of g. If

two graphs have the same deck they are said to be hypomorphic.

A famous long standing conjecture, due to Kelly and Ulam, is Ulam’s conjecture

(also known as the graph reconstruction conjecture).

Conjecture 4.1 (Ulam’s conjecture). Let g and g′ be simple graphs on n ≥ 3

vertices. Then g and g′ are isomorphic if and only if they are hypomorphic.

Of course, the ’only if’ part is trivial, however the ’if’ part has yet to be proven.

We say that g is reconstructable if whenever it is hypomorphic to another graph,

g′, then g and g′ are isomorphic.

Of course, everything above can be generalized to graphs with values in some

given set, E. We are interested in the case where E = N (i.e. multigraphs), in which

case Pouzet’s conjecture emerges as a closely related conjecture to Ulam’s conjec-

ture. We will see that Pouzet’s conjecture is stated in purely algebraic terms, and

if true would imply both Ulam’s conjecture and Ulam’s conjecture for multigraphs!

In this section we will follow the work of Thiery ([Thi00]) which, sadly, disproves

Pouzet’s conjecture. The disproof follows from considering a special series and using

Condition 1.1.

4.1 Reconstructability of multigraphs

For the rest of Section 4, when we write graph we mean multigraph, unless stated

otherwise. However, many of the following results hold for graphs with weights in

any set. (See [Thi00]).

Recall that we can evaluate polynomials f ∈ C[Gn] on C-weighted graphs.

Definition 4.1. A polynomial is called reconstructable if its value is constant on

hypomorphism classes. I.e. if g and g′ are hypomorphic then f(g) = f(g′).

Recall In from Section 3, and recall how two graphs g and g′ are isomorphic if

and only if they evaluate to the same on all invariants in In (or just some gener-

ating set of In). It turns out problem of graph reconstructability and polynomial

reconstructability, of those of In, is the same problem.

Proposition 4.1. All N-weighted graphs on n vertices are reconstructable if and

only if all invariants f ∈ In are reconstructable.

[12]Recall multisets are just sets which allow repetitions.
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Proof. Assume that all graphs are reconstructable. Then two hypomorphic graphs,

g and g′, are isomorphic and so f(g) = f(g′) for all f ∈ In. Thus all f ∈ In are

reconstructable.

Assume that all f ∈ In are reconstructable. Let g and g′ be hypomorphic.

By assumption, f(g) = f(g′) for all f ∈ In. But since In separates isomorphism

classes, it follows that g and g′ are isomorphic.

Recall the exponential of a graph (Eq. (3.1)) and its properties.

Proposition 4.2. Let g be a graph on n vertices with at least one isolated vertex.

Then xg⊛ is reconstructable.

Proof. For ease of notation, we set f := xg⊛ and denote the isolated vertex by v.

Let h be some multigraph, then we may write

f(h) =
∑

g′∈S(2)
n ·g

xg′(h) =
1

|Aut(g)|
∑

σ∈S(2)
n

xσg(h) =
1

|Aut(g)|
∑
j∈V

∑
σ,σ(v)=j

xσg(h),

and we let fj(h) :=
∑

σ,σ(v)=j x
σg(h). Because v is isolated, and because we sum

over σ such that σ(v) = j, we see that fj will contains no variables of the form

x{k,j}, and so fj(h) = fj(h\j). We now let h and h′ be two hypomorphic graphs

with n vertices. Since they’re hypomorphic, there exists some σ ∈ S
(2)
n such that

h\j ∼= h′
\σj. Since f is an invariant, we have that f(h′) = f(σh′), and so we may

reduce to the case where σ = id, so that h\j ∼= h′
\j.

By construction, fj is invariant under permutations which fix j, and so we get

fj(h) = fj(h\j) = fj(h
′
\j) = fj(h

′),

from which we see that

f(h) =
1

Aut(g)

∑
j∈V

fj(h) =
1

Aut(g)

∑
j∈V

fj(h
′) = f(h′),

meaning f is reconstructable.

This gives rise to the the main definition of this section.

Definition 4.2. We call a polynomial, f ∈ In, algebraically reconstructable if can

be expressed as a product or sum of polynomials of the form xg⊛, with g being a

graph on n vertices with at least one isolated vertex.

Furthermore, a graph g is called algebraically reconstructable if xg⊛ is alge-

braically reconstructable as a polynomial.

We will later see that algebraically reconstructable is a strictly stronger prop-

erty than normal reconstructability. In fact, the first step of showing this follows

immediately from Proposition 4.2:
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Corollary 4.1. An algebraically reconstructable polynomial is reconstructable.

Proof. Since sums and products of reconstructable polynomials are clearly recon-

structable, the fact follows immediately from Definition 4.2 and Proposition 4.2.

The polynomials of In separates isomorphism classes of graphs. This next the-

orem shows that the algebra of algebraically reconstructable polynomials, Rn, sep-

arates hypomorphism classes.

Theorem 4.1. Two graphs are hypomorphic if and only if they evaluate to the same

value on all algebraically reconstructable polynomials.

Proof. Assume g and g′ are hypomorphic. By definition, they evaluate to the same

value on all reconstructable polynomials, and so by Corollary 4.1 also on all alge-

braically reconstructable polynomials.

Let us show the converse. Let {f0, ..., fk} ⊆ In−1 be a finite generating set for

In−1. We introduce an extra variable, λ, and set F = f0 + λf1 + · · · + λkfk ∈
C[Gn−1, λ]. Clearly, g and g′ are isomorphic if and only if F (g) = F (g′) ∈ C[λ].

Fix some vertex v ∈ {1, ..., n}. With an appropriate relabelling of the vertices,

we may lift F ∈ C[Gn−1, λ] to a polynomial Fv ∈ C[Gn, λ] such that Fv(g) = F (g\v)

for any graph, g.

Notice, for ℓ ∈ N, we may write F ℓ
v = cv,0 + cv,1λ + · · · + cv,dλ

d with cv,i a

polynomial in the variables x{i,j} with no variables of the form x{v,i} appearing,

since otherwise Fv(g) ̸= F (g\v). We now define

sℓ :=
n∑

v=1

F ℓ
v =

(
n∑

v=1

cv,0

)
+

(
n∑

v=1

cv,1

)
λ+ · · ·+

(
n∑

v=1

cv,d

)
λd

where each coefficient,
∑n

v=1 cv,i, is an algebraically reconstructable invariant, since

the summands, cv,i, do not contain variables of the form x{v,i}. (v is still isolated).

Let g and g′ be two graphs which evaluate to the same value on all algebraically

reconstructable polynomials. By construction sℓ(g
′) = sℓ(g) ∈ C[λ], which spelled

out means that
n∑

v=1

Fv(g)
ℓ = sℓ(g) = sℓ(g

′) =
n∑

v=1

Fv(g
′)ℓ.

It then follows from the basic properties of symmetric functions, that there exists

σ ∈ S
(2)
n such that F (g\v) = Fv(g) = Fσv(g

′) = F (g′\σv) for all v. But we saw that

this means that g\v ∼= g′\σv for all v. Hence they must have the same deck and so

are hypomorphic.

This led Pouzet to formalizing the following conjecture.

Conjecture 4.2 (Pouzet’s conjecture). Every invariant f ∈ In is algebraically

reconstructable. In other words, the algebra, Rn, generated by all algebraically re-

constructable invariants equals In.
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By Theorem 4.1, and since In separate isomorphism classes of graphs, we find

that if Pouzet’s conjecture were true, it would imply that the multigraph version

of Ulam’s conjecture was true, and in particular that Ulam’s conjecture was true.

However, if false it would not imply anything, since Corollary 4.1 is not an ’if and

only if’.

Before we move on the the disproof of Pouzet’s conjecture, we show the following

proposition, which is not necessary for the disproof, but which allows us to show,

using algebra, that certain classes of graphs are reconstructable.

Proposition 4.3. Let g be a multigraph such that xg⊛ is reconstructable. Then g

is reconstructable.

We will only prove this fact for simple graphs. The proof for the multigraph

version is principally the same, but a lot more technical. See [Thi00] for this proof.

Proof. Let g be a simple graph, and let g′ be a graph hypomorphic to g. Clearly,

g′ must also be simple and must have the same number of edges. Thus we may

evoke Proposition 3.1 to get that xg⊛(g′) counts the number of subgraphs of g′

isomorphic to g. Since xg⊛ is reconstructable, we get that s(g, g′) = xg⊛(g′) =

xg⊛(g) = s(g, g) > 0. Hence, g′ must have some subgraph which is isomorphic to g,

but, since both g and g′ have the same number of edges, this subgraph must be g′

itself.

To summarize we have the following for a multigraph, g,

g algebraically reconstructable⇒ xg⊛ reconstructable⇒ g reconstructable. (4.1)

We will later see that there exists an example of a non-algebraically recon-

structable simple graph which is reconstructable. Thus, the converse of at least one

of the above implication is not true.

4.1.1 Disproof of Pouzet’s conjecture

We now give a non-constructive disproof of Pouzet’s conjecture, using theoretical

and computational means.

Definition 4.3. A graph which has at most one non-trivial connected component

is called a quasi-connected graph.

Lemma 4.1. The subalgebra of algebraically reconstructable invariants on n ver-

tices, Rn ⊆ In, is generated by quasi-connected multigraphs whose non-trivial con-

nected component uses < n vertices. We denote this set by C<n.

Proof. By definition Rn is generated by all invariants, xg⊛, where g has an isolated

vertex. So if we let g have an isolated vertex, then we wish to show that xg⊛ is a
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product or sum of elements of C<n. Clearly, if g has only one non-trivial connected

component then g ∈ C<n, and so we’re done. Thus without loss of generality

we may assume g has an isolated vertex and exactly two non-trivial connected

components, since if it has more than two, we may apply the this result recursively.

Let g1, g2 denote the two connected components on n1, n2 > 0 vertices such that

n1 + n2 = n− 1.

Consider g1, g2 on n vertices, by adding isolated points. Then g1, g2 ∈ C<n.

Taking the product, xg1⊛xg2⊛, will yield a sum of the exponentials of the super-

positions of g1 and g2. The summands will fall into one of two cases. In the first

case, the summand has two disjoint connected components and one isolated vertex

and must therefore be isomorphic to g. In the second case, the summand has

one connected component and two, or more, isolated vertices, and is thus quasi-

connected. Isolating the summands which are isomorphic to g therefore gives us

that xg⊛ = xg1⊛xg2⊛ −
∑

h x
h⊛, where h is a super-position of g1 and g2, and is

quasi-connected.

Remark 4.1. By an analogous argument, as that of the proof above, one can also

show that every non-connected graph is algebraically reconstructable, and thus also

reconstructable.

Lemma 4.2. Let C<n
d denote the number of quasi-connected multigraphs with d

edges, and whose connected component uses < n vertices. Let {fn
d }d be the Euler

transformation of {C<n
d }d. Then:

i) The dimension of Rn
d is bounded by fn

d .

ii) The number of algebraically reconstructable multigraphs with n vertices and d

edges is bounded by fn
d .

iii) If fn
d is strictly less than the total number of multigraphs on n vertices and

d edges, denoted by mn
d , then there are at least mn

d − fn
d non-algebraically

reconstructable multigraphs on n vertices and d edges.

Proof. By Lemma 4.1, the set C<n := {xg⊛ | g ∈ C<n} is a homogenous generating

set for Rn. Thus, it follows from Condition 1.1 that we have that H(Rn, z) is

dominated by

∏
g∈C<n

1

1− zdeg(g)
=

∞∏
d=1

1

(1− zd)C
<n
d

=
∞∑
d=0

fn
d z

d, (4.2)

from which (i) follows.

Clearly, (ii) and (iii) follow immediately.

Remark 4.2. It turns out that fn
d counts the number of multigraphs with d edges,

no isolated vertices, and whose connected components uses < n vertices.
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By this Lemma 4.2 we see that to disprove Pouzet’s conjecture, we need only

compute fn
d and mn

d and compare their sizes. To do this, we first need a graph

theoretic result.

Proposition 4.4. Let

m(x, y) =
∑

n≥1,d≥0

mn
dx

nyd and c(x, y) =
∑

n≥1,d≥0

cndx
nyd

be the two two-variable power series, enumerating the number of multigraphs on n

vertices with d edges, and the number of connected multigraphs on n vertices with

d edges, respectfully.

Then m(x, y) and c(x, y) are related by

1 +m(x, y) = exp

(
∞∑
k=1

c(xk, yk)

k

)
.

Proof. By the multivariable Pólya enumeration theorem, we have that Z(Sm, c(x, y))

is the generating function for the number of graphs with exactly m connected com-

ponents. Thus, the sum over all m must yield the generating function for the total

number of graphs. That is, we have that

1 +m(x, y) =
∞∑

m=1

Z(Sm, c(x, y)),

and result follows from Proposition 1.1.

Theorem 4.2. There is a multigraph on 11 vertices, using 18 edges, which is not

algebraically reconstructable. Thus, Pouzet’s conjecture is false.

Proof. By Lemma 4.2 we need only compute f 11
18 and m11

18 and check that f 11
18 < m11

18.

Let m(x, y) and c(x, y) be as in Proposition 4.4. We first wish to use Proposi-

tion 4.4 and Procedure 1.2 to compute cnd from mn
d , which are known, from The-

orem 3.1 to be the coefficients of H(In, z). This we know how to compute from

Section 3.1.1.

Fix n. It is then clear that the homogeneous component of degree d of C<n, is

given by C<n
d =

∑
k<n c

k
d. And so we may compute the sequence, {C<n

d }d, and take

its Euler transformation to get the sequence, {fn
d }d.

We implement all of this in SAGEMATH, and the code can be found in Appendix A,

Listing 13. Setting n = 11, we find that m11
18−f 11

18 = 47 473 612, meaning that there

are at least 47 473 612, out of a total of 1 457 002 920 graphs on 11 vertices with 18

edges, for which Pouzet’s conjecture fails.

While we can’t be sure there isn’t some counter example to Pouzet’s conjecture

for less than 11 vertices, the above theorem shows at least 3.25% of all graphs, on

11 vertices and 18 edges, are not algebraically reconstructable.

We expand on this result by checking for n > 11. Thiery managed to compute

up to n = 18, but as computers have gotten faster, we can check for even higher n:
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Corollary 4.2. Pouzet’s conjecture fails for n ∈ {11, 12, ..., 35}.

Proof. Using the exact same set-up, we compute fn
d and mn

d for various n and

0 ≤ d ≤ 150. We find that, for all n ∈ {11, 12, ..., 35}, there is some 0 ≤ d ≤ 150

for which fn
d < mn

d .

For these larger n, we there can be certain d’s, for which this ratio shoots up,

past 90%. In fact, it looks as if it converges towards 100%, for some d and n→∞.

Because of this, and because of the previous corollary, we’re very confident in the

following conjecture.

Conjecture 4.3. Pouzet’s conjecture fails for all n ≥ 11.

4.2 Reconstructability of s-graphs

Notice that every definition and result of Section 4.1 will work for s-graphs and

the algebras In|s, with analogous proof. This disproof was also done by Thiery in

[Thi00], but only for s = 1.

Moreover, we have the following lemma, which partly connects the two algebras.

Lemma 4.3. An s-graph, which is algebraically reconstructable in In, is also alge-

braically reconstructable in In|s.

Proof. Let xs⊛ ∈ In|s be the exponential of some s-graph. By assumption, there is

some polynomial, p, such that xs⊛ = p(xg1⊛, ...,xgk⊛), where gi are s-graphs with

at least one isolated vertex. Then we have

π(xs⊛) = π(p(xg1⊛, ...,xgk⊛)) = p(π(xg1⊛), ..., π(xgk⊛)),

where π : In → In|s is the quotient map.

We now recreate the disproof of the previous section in the algebras In|s. In the

new context, Lemma 4.1 and Lemma 4.2 reads as follows.

Lemma 4.4. The subalgebra of algebraically reconstructable s-graphs, Rn|s ⊆ In|s,
is generated by quasi-connected s-graphs, whose non-trivial connected component

uses < n vertices. We denote this set by C<n|s

Lemma 4.5. Let {fn
d |s}d be the Euler transformation of {C<n

d |s}d. Then

i) The dimension of Rn
d |s is bounded by fn

d |s.

ii) The number of algebraically reconstructable s-graphs with n vertices and d

edges is bounded by fn
d |s.

iii) If fn
d |s is strictly less than the total number of s-graphs on n vertices and d

edges, denoted by mn
d |s, then there are at least mn

d |s − fn
d |s non-algebraically

reconstructable s-graphs on n vertices and d edges.
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A bit surprisingly, the first counter-example to Pouzet’s conjecture changes for

differing s, as the proof of the following shows.

Theorem 4.3. For all s ∈ N there exists some s-graph which is not algebraically

reconstructable.

Proof. The proof and code is completely analogous to that of Theorem 4.2, we need

only change so that we count the number of s-graphs. However, H(In|s, z) counts
exactly that, and we know how to compute this series from Corollary 3.1.

In regards to the code, we can reuse that of Theorem 4.2 by simply exchanging

the function H(n) with Hres(n,s). See Listing 14 for the implementation.

Computing this we get that for s = 1, the conjecture first fails when n = 13 and

d = 17. For 2 ≤ s ≤ 5, the conjecture first fails when n = 11 and d = 17. And for

6 ≤ s ≤ 17 the conjecture first fails when n = 11 and d = 18.

Finally, for s, s′ ≥ 18 we have H(I11|s, z)18 = H(I11|s′ , z)18 for all 1 ≤ d ≤ 18.

This is because when s ≥ d we have H(In|s, z)d = H(In, z)d, so allowing more

edges won’t change the total number of s-graphs. Since f 11
18 |s only depends on the

values m11
1 |s, ...,m11

18|s, we find that m11
18|s − f 11

18 |s > 0 for all s ≥ 18.

In particular, we see that there is some simple graph on 13 vertices and 17 edges

which is not algebraically reconstructable. However, in [McK22] McKay positively

verified the reconstructability conjecture for all graph with at most 13 vertices.

Thus, we see that there must exist some simple graph on 13 vertices and 17 edges,

which is not algebraically reconstructable but is reconstructable. This justifies the

earlier claim that algebraically reconstructability is a strictly stronger property than

that of regular reconstructability.

Remark also that the contra positive of Lemma 4.3 implies that this graph is also

non-algebraically reconstructable in In. Thus, unsurprisingly, the number mn
d − fn

d

is only a lower bound of the number of non-algebraically reconstructable graphs.
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5 Final Remarks and Moving Forward

We have observed how the algorithmic nature of the theory of invariants of finite

groups plays well into the combinatorial nature of graphs. We found that the

combination of these aspects forms quite an interesting tool for studying graphs,

and even paved the way for some contributions back to invariant theory. Indeed,

the we saw a few generalizations from their graph-theoretic counterpart, to that of

any finite (permutation) group; namely those of Remark 3.5 and Conjecture 3.2,

which appear promising if the latter conjecture proves to be true.

However, we also found that many of the computations were intractable, even

for small n. In particular, the explicit computation of invariants still has a long

way to go, before it can be of much use. Unfortunately, this fact means that we are

not exceedingly confident in many of the conjectures made throughout the thesis,

as they are based on a very small data set.

Even so, we believe that the application of invariant theory to graphs, holds a

lot of potential, and there are still many remaining questions left unanswered.

5.1 Further investigations

Besides the conjectures mentioned throughout the thesis, there are a few more

general aspects we deem interesting to investigate, going forward.

Most of the theory and computations of Section 3 and Section 4, can be rewritten

for other types of graph with little change. For instance, one could investigate

digraphs or hypergraphs by, instead of considering two-sets, {i, j}, one could, for

digraphs use tuples, (i, j), or, for hyper graphs use k-sets, {i1, ..., ik}). The main

change would be that of Lemma 3.1.

Furthermore, the representation, S
(2)
n , can be split into three irreducible compo-

nents ([Thi00]), and so one can consider the multigraded Hilbert series. This would

be particularly interesting, together with the results of Section 1.3 and Remark 1.1.

The nature of the roots of the polynomials, H(In|s, z), are also a mystery to us,

and would be quite interesting to look into, if not just quite aesthetically pleasing.

Perhaps analytical tools could be of help?

Finally, it would be interesting to comb through the invariant theory of finite

graphs, to see which results (if any) can be generalized to the context of semi-graded

rings. This would be very useful in the investigation of the algebras, In|s.
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A Source Code

Here we list the code of the implementations, mentioned throughout the thesis. This

includes, procedures and algorithms, as well as how these were utilized to disprove

Pouzet’s conjecture.

We have implemented everything in SAGEMATH, and all of it should be able to be

run on a fresh installation, given that the prior functions are defined. Please note

that the notation used in the implementations, is not necessarily consistent with

the rest of the thesis. Furthermore, we have made no effort in creating a proper

documentation (the thesis itself should suffice, for such a project of this scale), and

we have made no effort in error handling. Thus, the user may need some knowledge

of the theory, before the code can be safely utilized.

Note: In the implementations we work over the field Q. All the theory has been

written for C, however since we never actually use that the field is algebraically

closed, the theory will work for any field of characteristic 0. In fact, more often

than not, it suffice that char(K) does not divide |G|.

Code from section 1

1 def euler trans(seq):

2 # INPUT: seq <- Sequence of integers

3 # OUTPUT: A <- The Euler transformation of seq

4 C = []

5 A = []

6 for i in range(1, len(seq)+1):

7 s = sum(d*seq[d-1] for d in divisors(i))

8 C.append(s)

9 s += sum(C[j-1]*A[i-j-1] for j in range(1, i))

10 A.append(s/i)

11 return A

Listing 1: Computing the Euler transformation of sequence, seq.

1 def euler inv trans(seq):

2 # INPUT: seq <- Sequence of integers

3 # OUTPUT: A <- The inverse Euler transformation of seq

4 C = []

5 A = []

6 for i in range(1, len(seq) + 1):

7 s = sum(C[j-1]* seq[i-j-1] for j in range(1, i))

8 C.append(i*seq[i-1] - s)

9 s = sum([ moebius(i // d) * C[d - 1] for d in divisors(i)])

10 A.append(s/i)

11 return A

Listing 2: Computing the inverse Euler transformation of sequence, seq.
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1 def euler inv trans two var(mat):

2 # INPUT: mat <-- List of sequences of integers

3 # OUTPUT: A <-- The two variable inverse euler transformation

4 R.<y> = ZZ[]

5 # Transform each row into a polynomials in y.

6 # We only care about the coefficients up to the given precision

, why the +O(y^len(mat))

7 g = [ add([mat[p][q]*y^(q)+O(y^( len(mat[-1]))) for q in range(

len(mat[p]))]) for p in range( len(mat)) ]

8 b = []

9 # Construct intermediary sequence

10 for p in range(1, len(g)+1):

11 pg = p*g[p-1]

12 ps = add([ k*b[k-1]*g[p-k-1] for k in range(1,p) ])

13 b.append( (pg-ps)/p )

14

15 # Fill in 0 untill dimensions match

16 c = [SR(bi). l i s t () for bi in b]

17 for i in range( len(c)):

18 while len(c[i]) < len(c[-1]):

19 c[i]. append (0)

20 c[i].pop(0)

21

22 A = []

23 for p in range(1, len(c)+1):

24 S = []

25 for q in range(1, len(c[p-1]) +1):

26 s = sum([c[(p//r) -1][(q//r) -1]* moebius(r)/r for r in

divisors(gcd(p,q))])

27 S.append(s)

28 A.append(S)

29

30 return A

Listing 3: Computing the inverse Euler transformation in two variables of sequence

of sequences, mat. (The input is more akin to a matrix).
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Code from section 2

1 def RO(G,f):

2 # INPUT: G <-- permutation group , f <- polynomial

3 # OUTPUT: fr <-- the reynolds operator applied to f

4 R = PolynomialRing(QQ , 'x', G.degree ())

5 fr = 0

6 for g in G:

7 fr += f(*g(R.gens()))

8 return fr/G.cardinality ()

Listing 4: Evaluation of the Reynolds operator G on a polynomial, f.

1 def kings algorithm(G, beta):

2 # INPUT: G <-- finite group , beta <-- degree bound of

invariants (e.g. |G|)

3 # OUTPUT: S <-- minimal generating set of R^G

4 from sage.rings.polynomial.toy buchberger import spol

5 N = G.degree ()

6 R = PolynomialRing(QQ ,'x',N)
7 S, GB = [],[]

8 for d in range(1,beta +1):

9 print ('Computing invariant of degree ',d,'...')
10 Sd = []

11 GB = l i s t (R.ideal(S).groebner basis(deg bound=d))

12 #GB = GB + [h for f in GB for g in GB if (h := spol(f, g)).

degree () == d]

13 M = []

14 for t in WeightedIntegerVectors(d, N*[1]):

15 t = R({ tuple(t):1})
16 i f not any((g.lm()).divides(t) for g in GB):

17 M.append(t)

18 i f M == []: break

19 for t in M:

20 f = RO(G,t)

21 g = f.reduce(GB)

22 i f g != 0:

23 Sd.append(f)

24 GB.append(g)

25 S = S + Sd

26 print ('Found ', len(Sd), 'invariants of degree ', d)

27 for g in Sd: print (g);print ()

28 print ()

29 return S

Listing 5: Our implementation of King’s algorithm. Note that line 11 could be

exchanged by line 12. Be warned! Changing the order of the polynomial ring, R,

can yield non-minimal sets. (This is likely because the reduce method is imported

from SINGULAR and so does not inherit the order of R).
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Code from section 3

We found that SAGEMATH implemented partitions in an odd way, so the following

helper function translates from SAGEMATH notation to a notation that is more con-

sistent with that of [HP73].

1 def to HP notation(p,n):

2 # INPUT: p <-- partition of n in Sage -notation

3 # OUTPUT: l <-- p in HP notation (l[k] is exponent of s k+1)

4 l = n*[0]

5 for k in range(n):

6 l[k] = l i s t (p).count(k+1)

7 return l

Listing 6: Helper function to translate partition notations.

1 def to twoset cycletype(p,n):

2 # INPUT: n <-- integer , p <-- partition of n in HP-notation

3 # OUTPUT: l <-- induced partition over S^(2) n

4 i f n < 3: l = n*[0]

5 e l se : l = binomial(n,2) *[0]#((n**2 + n)//2) *[0]

6 # First contributing factor

7 for k in range(n):

8 i f p[k] == 0: continue

9 i f k % 2 == 0:

10 # This is the odd case

11 l[k] += p[k]*(k//2)

12 e l se :

13 # This is the even case

14 l[(k-1) //2] += p[k]

15 l[k] += p[k]*((k-1) //2)

16

17 # Second contributing factor

18 for r in range(n):

19 i f p[r] == 0: continue

20 for t in range(r+1):

21 i f p[t] == 0 or (r == t and p[t] <= 1): continue

22 i f r == t:

23 l[t] += (t+1)*( binomial(p[t],2))

24 e l se :

25 l[lcm(r+1,t+1) -1] += gcd(r+1,t+1)*p[r]*p[t]

26

27 return l

Listing 7: Computes the induced partition of
(
n
2

)
over S

(2)
n . This algorithm is based

on Lemma 3.1.
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1 def get S2n gens(n):

2 # INPUT: n <-- integer > 2

3 # OUTPUT: g1 ,g2 <-- generators of S^(2) n

4 gen1 = [(2+i,n+i) for i in range(n-2)]

5 i f n%2 == 0:

6 gen2 = []

7 for i in range(1,(n-2) //2 + 1):

8 k = [i + sum(n-r-1 for r in range(l)) for l in range(n-

i)] + [n-i + sum(n-r-1 for r in range(l)) for l in

range(i)]

9 gen2.append( tuple(k))

10 k = [n//2 + sum(n-r-1 for r in range(l)) for l in range(n

//2)]

11 gen2.append( tuple(k))

12 e l se :

13 gen2 = []

14 for i in range(1,(n-1) //2 + 1):

15 k = [i + sum(n-r-1 for r in range(l)) for l in range(n-

i)] + [n-i + sum(n-r-1 for r in range(l)) for l in

range(i)]

16 gen2.append( tuple(k))

17 return (gen1 , gen2)

Listing 8: Computing two generators, g1,g2, which generate S
(2)
n . This is the

implementation of Algorithm 3.

1 def H(n):

2 # INPUT: n <-- positive integer

3 # OUTPUT: Q <-- generating function for H(I^n, z)

4 P.<z> = ZZ[]

5 Q = 0

6 for l in Partitions(n):

7 T = l.conjugacy c la s s size()

8 l = to HP notation(l,n)

9 p = to twoset cycletype(l,n)

10 for k in range(1, len(p)+1):

11 i f p[k-1] == 0: continue

12 T *= 1/( (1-z^k)^p[k-1] )

13 Q += T/factorial(n)

14 return Q

Listing 9: Computes the generating function for the Hilbert series of In, using

Formula 3.1 and Lemma 3.1.
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1 R.<z> = ZZ[]

2 limit = 100

3 for n in range(2,20):

4 N = binomial(n,2)

5 sign = 1 i f N % 2 == 0 e l se -1

6 F = H(n)

7 Finv = F(1/z)

8 r = 0

9 while r <= limit:

10 F = sign*z^(N+r)*F

11 i f F == Finv:

12 print (n, r)

13 break

14 r += 1

15 e l se :

16 print (n, "Failed to verify Gorensteiness")

Listing 10: Test for 0 ≤ r ≤ 100 and 0 ≤ n ≤ 20 if In is Gorenstein. If we find r

such that In satisfies Theorem 2.6, it will print n and r, and if no r < 100 satisfies

Theorem 2.6, it will print n and that it failed to verify Gorensteiness.

1 def Hres(n,s):

2 # INPUT: n <-- postive integer , s <-- postive integer

3 # OUTPUT: Q <-- generating function for H(I^n| s, z)

4 P.<z> = ZZ[]

5 Q = 0

6 for l in Partitions(n):

7 T = l.conjugacy c la s s size()

8 l = to HP notation(l,n)

9 p = to twoset cycletype(l,n)

10 for k in range(1, len(p)+1):

11 i f p[k-1] == 0: continue

12 T *= add([z^(k*i) for i in range(s+1)])^p[k-1]

13 Q += T/factorial(n)

14 return Q

Listing 11: Computes the generating function for the Hilbert series of In|s using

Corollary 3.1 (i).
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1 def get squarefree monomials(N):

2 # INPUT: N <-- Positive integer

3 # OUTPUT: L <-- List of all square -free monomials of degree at

most N

4 import itertools

5 L = l i s t (itertools.product ([0,1], repeat=N))

6 return l i s t (L)

7

8 def kings algorithm simple graphs(G, beta):

9 # INPUT: G <-- S^(2) n, beta <-- degree bound of invariants

10 # OUTPUT: S <-- Conjectured minimal generating set of I^n| 1

11 N = G.degree ()

12 R = PolynomialRing(QQ , 'x', N)

13 I = R.ideal([R.gens()[i]^2 - R.gens()[i] for i in range(N)])

14 Q = R.quotient(I)

15 L = get squarefree monomials(N)

16 S = []

17 GB = []

18 for d in range(1,beta +1):

19 Sd = []

20 GB = l i s t (Q.ideal(S).groebner basis(deg bound=d))

21 Vd = [v for v in L i f sum(v) == d]

22 M = []

23 for t in Vd:

24 t = R({ tuple(t):1})
25 i f not any((g.lift().lm()).divides(t) for g in GB):

26 M.append(t)

27 i f M == []: break

28 for t in M:

29 f = Q(RO(R,G,t))

30 g = f.reduce(GB)

31 i f g != 0:

32 Sd.append(f)

33 GB.append(g)

34 S = S + Sd

35 return [s for s in S]

Listing 12: Implementation of Algorithm 4. This is not a proven algorithm, but

appears to yield good results for S
(2)
4 and S

(2)
5 .
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Code from section 4

1 prec = 150

2 R.<z> = PowerSeriesRing(ZZ, prec)

3 N = 3

4 while True:

5 mat = []

6 for n in range(1,N+1):

7 HIn = H(n)

8 mat.append(R(HIn). l i s t ())

9 c = EulerInvTransTwoVar(mat)

10 CN =[sum([c[k][d] for k in range(N-1)]) for d in range(prec -1)]

11 FN = EulerTrans(CN)

12 diff = [(mat[N-1][i+1] - FN[i]) for i in range( len(FN))]

13 marker = [1 i f i > 0 e l se 0 for i in diff]

14 i f 1 in marker:

15 print ('FAIL:', 'n =', N, ', d =', marker.index (1) +1)

16 N += 1

Listing 13: Procedure to find the first d ≤ 150 for which Pouzet’s conjecture fails

for a given n, if Pouzet’s fails within the range.

1 s = 1

2 while True:

3 N = 3

4 while N < 25:

5 mat = []

6 for n in range(1,N+1):

7 HIn = Hres(n, s)

8 mat.append(HIn. l i s t ())

9 c = EulerInvTransTwoVar(mat)

10 CN = [sum([c[k][d] for k in range(N-1)]) for d in range( len

(c[0]))]

11 FN = EulerTrans(CN)

12 diff = [(mat[N-1][i+1] - FN[i]) for i in range( len(FN))]

13 marker = [1 i f i > 0 e l se 0 for i in diff]

14 i f 1 in marker:

15 print ('FAIL:', 's =', s, ', n =', N, ', d =', marker.

index (1)+1)

16 break

17 N += 1

18 s += 1

Listing 14: For all s ∈ N, the procedure will find the first n and d for which

pouzet’s conjecture fails, if it fails within the range. Note that, since Hres outputs

a polynomial, we need not covert to a powerseries, and thus need no precision

parameter.
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